
Martin Sarter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7392227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cholinergic systems, attentional-motor integration, and cognitive control in Parkinson's disease. Progress in Brain Research, 2022, 269, 345-371.	1.4	8
2	Disrupted Choline Clearance and Sustained Acetylcholine Release <i>In Vivo</i> by a Common Choline Transporter Coding Variant Associated with Poor Attentional Control in Humans. Journal of Neuroscience, 2022, 42, 3426-3444.	3.6	5
3	Make a Left Turn: Corticoâ€Striatal Circuitry Mediating the Attentional Control of Complex Movements. Movement Disorders, 2021, 36, 535-546.	3.9	10
4	Reduction of falls in a rat model of PD falls by the M1 PAM TAK-071. Psychopharmacology, 2021, 238, 1953-1964.	3.1	7
5	α4β2 [*] Nicotinic Cholinergic Receptor Target Engagement in Parkinson Disease <scp>Gait–Balance</scp> Disorders. Annals of Neurology, 2021, 90, 130-142.	5.3	9
6	Theta-gamma coupling emerges from spatially heterogeneous cholinergic neuromodulation. PLoS Computational Biology, 2021, 17, e1009235.	3.2	14
7	Comment on Pohorala et al.: Sign-tracking as a predictor of addiction vulnerability. Psychopharmacology, 2021, 238, 2661-2664.	3.1	3
8	Rescuing theÂattentional performance ofÂrats withÂcholinergic losses by theÂM1 positive allosteric modulator TAK-071. Psychopharmacology, 2020, 237, 137-153.	3.1	16
9	Complex Movement Control in a Rat Model of Parkinsonian Falls: Bidirectional Control by Striatal Cholinergic Interneurons. Journal of Neuroscience, 2020, 40, 6049-6067.	3.6	18
10	Forebrain Cholinergic Signaling: Wired and Phasic, Not Tonic, and Causing Behavior. Journal of Neuroscience, 2020, 40, 712-719.	3.6	74
11	Phasic cholinergic signaling promotes emergence of local gamma rhythms in excitatory–inhibitory networks. European Journal of Neuroscience, 2020, 52, 3545-3560.	2.6	14
12	Addiction vulnerability and the processing of significant cues: Sign-, but not goal-, tracker perceptual sensitivity relies on cue salience Behavioral Neuroscience, 2020, 134, 133-143.	1.2	12
13	Co-treatment with rivastigmine and idalopirdine reduces the propensity for falls in a rat model of falls in Parkinson's disease. Psychopharmacology, 2019, 236, 1701-1715.	3.1	8
14	Cholinergic double duty: cue detection and attentional control. Current Opinion in Psychology, 2019, 29, 102-107.	4.9	45
15	The cortical cholinergic system contributes to the top-down control of distraction: Evidence from patients with Parkinson's disease. NeuroImage, 2019, 190, 107-117.	4.2	33
16	Basal forebrain chemogenetic inhibition disrupts the superior complex movement control of goal-tracking rats Behavioral Neuroscience, 2019, 133, 121-134.	1.2	15
17	Repetitive mild concussion in subjects with a vulnerable cholinergic system: Lasting cholinergic-attentional impairments in CHT+/â^' mice Behavioral Neuroscience, 2019, 133, 448-459.	1.2	6
18	The paraventricular thalamus is a critical mediator of top-down control of cue-motivated behavior in rats. ELife, 2019, 8, .	6.0	68

#	Article	IF	CITATIONS
19	Targeting the pedunculopontine nucleus in Parkinson's disease: Time to go back to the drawing board. Movement Disorders, 2018, 33, 1871-1875.	3.9	16
20	Regional vesicular acetylcholine transporter distribution in human brain: A [¹⁸ F]fluoroethoxybenzovesamicol positron emission tomography study. Journal of Comparative Neurology, 2018, 526, 2884-2897.	1.6	45
21	The hot â€~n' cold of cue-induced drug relapse. Learning and Memory, 2018, 25, 474-480.	1.3	24
22	Addiction vulnerability trait impacts complex movement control: Evidence from sign-trackers. Behavioural Brain Research, 2018, 350, 139-148.	2.2	13
23	The neuroscience of cognitive-motivational styles: Sign- and goal-trackers as animal models Behavioral Neuroscience, 2018, 132, 1-12.	1.2	54
24	The ability for cocaine and cocaine-associated cues to compete for attention. Behavioural Brain Research, 2017, 320, 302-315.	2.2	26
25	Unresponsive Choline Transporter as a Trait Neuromarker and a Causal Mediator of Bottom-Up Attentional Biases. Journal of Neuroscience, 2017, 37, 2947-2959.	3.6	34
26	Acetylcholine Release in Prefrontal Cortex Promotes Gamma Oscillations and Theta–Gamma Coupling during Cue Detection. Journal of Neuroscience, 2017, 37, 3215-3230.	3.6	114
27	The European Journal of Neuroscience from 2008 to 2014. European Journal of Neuroscience, 2017, 45, 875-876.	2.6	0
28	Distinct Frontoparietal Networks Underlying Attentional Effort and Cognitive Control. Journal of Cognitive Neuroscience, 2017, 29, 1212-1225.	2.3	27
29	Thalamic cholinergic innervation makes a specific bottom-up contribution to signal detection: Evidence from Parkinson's disease patients with defined cholinergic losses. NeuroImage, 2017, 149, 295-304.	4.2	34
30	â€~Hot' vs. â€~cold' behaviouralâ€cognitive styles: motivationalâ€dopaminergic vs. cognitiveâ€cholinergic processing of a Pavlovian cocaine cue in sign―and goalâ€ŧracking rats. European Journal of Neuroscience, 2017, 46, 2768-2781.	2.6	39
31	Hemicholinium-3 sensitive choline transport in human T lymphocytes: Evidence for use as a proxy for brain choline transporter (CHT) capacity. Neurochemistry International, 2017, 108, 410-416.	3.8	2
32	Diverse Roads to Relapse: A Discriminative Cue Signaling Cocaine Availability Is More Effective in Renewing Cocaine Seeking in Goal Trackers Than Sign Trackers and Depends on Basal Forebrain Cholinergic Activity. Journal of Neuroscience, 2017, 37, 7198-7208.	3.6	61
33	Reducing falls in Parkinson's disease: interactions between donepezil and the 5â€HT ₆ receptor antagonist idalopirdine on falls in a rat model of impaired cognitive control of complex movements. European Journal of Neuroscience, 2017, 45, 217-231.	2.6	22
34	Ascending Systems – Top Down Control: Noradrenergic and Cholinergic Control of Attention and Learning â~†. , 2017, , 463-473.		0
35	Cholinergic genetics of visual attention: Human and mouse choline transporter capacity variants influence distractibility. Journal of Physiology (Paris), 2016, 110, 10-18.	2.1	42
36	Cortical cholinergic signaling controls the detection of cues. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1089-97.	7.1	162

#	Article	IF	CITATIONS
37	What do phasic cholinergic signals do?. Neurobiology of Learning and Memory, 2016, 130, 135-141.	1.9	54
38	Cortico-Striatal, Cognitive-Motor Interactions Underlying Complex Movement Control Deficits. Innovations in Cognitive Neuroscience, 2016, , 117-134.	0.3	1
39	CORTICAL CHOLINERGIC TRANSIENTS FOR CUE DETECTION AND ATTENTIONAL MODE SHIFTS. , 2015, , 27-44.		2
40	Attention and the Cholinergic System: Relevance to Schizophrenia. Current Topics in Behavioral Neurosciences, 2015, 28, 327-362.	1.7	29
41	Modeling falls in Parkinson's disease: Slow gait, freezing episodes and falls in rats with extensive striatal dopamine loss. Behavioural Brain Research, 2015, 282, 155-164.	2.2	33
42	Interpreting Chemical Neurotransmission in Vivo: Techniques, Time Scales, and Theories. ACS Chemical Neuroscience, 2015, 6, 8-10.	3.5	29
43	Behavioral-cognitive targets for cholinergic enhancement. Current Opinion in Behavioral Sciences, 2015, 4, 22-26.	3.9	22
44	Cholinergic capacity mediates prefrontal engagement during challenges to attention: evidence from imaging genetics. NeuroImage, 2015, 108, 386-395.	4.2	44
45	Modeling Parkinson's disease falls associated with brainstem cholinergic systems decline Behavioral Neuroscience, 2015, 129, 96-104.	1.2	37
46	Individual variation in the propensity to attribute incentive salience to a food cue: Influence of sex. Behavioural Brain Research, 2015, 278, 462-469.	2.2	69
47	Deterministic functions of cortical acetylcholine. European Journal of Neuroscience, 2014, 39, 1912-1920.	2.6	96
48	Editors' Issue 2014. European Journal of Neuroscience, 2014, 39, 1719-1719.	2.6	0
49	Disposed to Distraction: Genetic Variation in the Cholinergic System Influences Distractibility But Not Time-on-Task Effects. Journal of Cognitive Neuroscience, 2014, 26, 1981-1991.	2.3	65
50	Transgenic overexpression of the presynaptic choline transporter elevates acetylcholine levels and augments motor endurance. Neurochemistry International, 2014, 73, 217-228.	3.8	15
51	A systemically-available kynurenine aminotransferase II (KAT II) inhibitor restores nicotine-evoked glutamatergic activity in the cortex of rats. Neuropharmacology, 2014, 82, 41-48.	4.1	44
52	Where attention falls: Increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function. Experimental Neurology, 2014, 257, 120-129.	4.1	90
53	Cholinergic Control over Attention in Rats Prone to Attribute Incentive Salience to Reward Cues. Journal of Neuroscience, 2013, 33, 8321-8335.	3.6	129
54	Monitoring cholinergic activity during attentional performance in mice heterozygous for the choline transporter: A model of cholinergic capacity limits. Neuropharmacology, 2013, 75, 274-285.	4.1	22

#	Article	IF	CITATIONS
55	Selective potentiation of (α4)3(β2)2 nicotinic acetylcholine receptors augments amplitudes of prefrontal acetylcholine- and nicotine-evoked glutamatergic transients in rats. Biochemical Pharmacology, 2013, 86, 1487-1496.	4.4	18
56	Increased distractor vulnerability but preserved vigilance in patients with schizophrenia: Evidence from a translational Sustained Attention Task. Schizophrenia Research, 2013, 144, 136-141.	2.0	47
57	Diminished trk <scp>A</scp> receptor signaling reveals cholinergicâ€attentional vulnerability of aging. European Journal of Neuroscience, 2013, 37, 278-293.	2.6	41
58	Forebrain Cholinergic Systems and Cognition: New Insights Based on Rapid Detection of Choline Spikes Using Enzyme-Based Biosensors. Neuromethods, 2013, , 257-277.	0.3	1
59	The Presynaptic Choline Transporter Imposes Limits on Sustained Cortical Acetylcholine Release and Attention. Journal of Neuroscience, 2013, 33, 2326-2337.	3.6	57
60	Leveraging the cortical cholinergic system to enhance attention. Neuropharmacology, 2013, 64, 294-304.	4.1	57
61	Prefrontal Cholinergic Mechanisms Instigating Shifts from Monitoring for Cues to Cue-Guided Performance: Converging Electrochemical and fMRI Evidence from Rats and Humans. Journal of Neuroscience, 2013, 33, 8742-8752.	3.6	121
62	Modeling Fall Propensity in Parkinson's Disease: Deficits in the Attentional Control of Complex Movements in Rats with Cortical-Cholinergic and Striatal–Dopaminergic Deafferentation. Journal of Neuroscience, 2013, 33, 16522-16539.	3.6	63
63	Cognitive Performance as a Zeitgeber: Cognitive Oscillators and Cholinergic Modulation of the SCN Entrain Circadian Rhythms. PLoS ONE, 2013, 8, e56206.	2.5	35
64	Revitalizing psychiatric drug discovery. Nature Reviews Drug Discovery, 2012, 11, 423-424.	46.4	18
65	Bidirectional interactions between circadian entrainment and cognitive performance. Learning and Memory, 2012, 19, 126-141.	1.3	70
66	CNTRICS Final Biomarker Selection: Control of Attention. Schizophrenia Bulletin, 2012, 38, 53-61.	4.3	44
67	Cholinergic contributions to the cognitive symptoms of schizophrenia and the viability of cholinergic treatments. Neuropharmacology, 2012, 62, 1544-1553.	4.1	72
68	Time to Pay Attention: Attentional Performance Time-Stamped Prefrontal Cholinergic Activation, Diurnality, and Performance. Journal of Neuroscience, 2012, 32, 12115-12128.	3.6	32
69	Transient Inactivation of the Neonatal Ventral Hippocampus Impairs Attentional Set-Shifting Behavior: Reversal with an α7 Nicotinic Agonist. Neuropsychopharmacology, 2012, 37, 2476-2486.	5.4	41
70	Challenges to attention: A continuous arterial spin labeling (ASL) study of the effects of distraction on sustained attention. NeuroImage, 2011, 54, 1518-1529.	4.2	94
71	Sustained attention in mice: Expanding the translational utility of the SAT by incorporating the Michigan Controlled Access Response Port (MICARP). Behavioural Brain Research, 2011, 225, 574-583.	2.2	38
72	EJN in the digital age: introducing the â€~EJN blog'. European Journal of Neuroscience, 2011, 34, 1711-1711.	2.6	0

#	Article	IF	CITATIONS
73	Enhanced Control of Attention by Stimulating Mesolimbic-Corticopetal Cholinergic Circuitry. Journal of Neuroscience, 2011, 31, 9760-9771.	3.6	123
74	Modes and Models of Forebrain Cholinergic Neuromodulation of Cognition. Neuropsychopharmacology, 2011, 36, 52-73.	5.4	604
75	Deficits in attentional control: Cholinergic mechanisms and circuitry-based treatment approaches Behavioral Neuroscience, 2011, 125, 825-835.	1.2	85
76	Prefrontal β2 Subunit-Containing and α7 Nicotinic Acetylcholine Receptors Differentially Control Glutamatergic and Cholinergic Signaling. Journal of Neuroscience, 2010, 30, 3518-3530.	3.6	124
77	Enhancement of Attentional Performance by Selective Stimulation of α4β2* nAChRs: Underlying Cholinergic Mechanisms. Neuropsychopharmacology, 2010, 35, 1391-1401.	5.4	146
78	Antipsychotic-Induced Movement Disorders. , 2010, , 115-115.		0
79	Area Under the Curve. , 2010, , 151-151.		1
80	Disruption of Mesolimbic Regulation of Prefrontal Cholinergic Transmission in an Animal Model of Schizophrenia and Normalization by Chronic Clozapine Treatment. Neuropsychopharmacology, 2009, 34, 2710-2720.	5.4	18
81	nAChR agonist-induced cognition enhancement: Integration of cognitive and neuronal mechanisms. Biochemical Pharmacology, 2009, 78, 658-667.	4.4	110
82	A neurocognitive animal model dissociating between acute illness and remission periods of schizophrenia. Psychopharmacology, 2009, 202, 237-258.	3.1	37
83	Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nature Reviews Neuroscience, 2009, 10, 383-390.	10.2	294
84	Cholinergic optimization of cueâ€evoked parietal activity during challenged attentional performance. European Journal of Neuroscience, 2009, 29, 1711-1722.	2.6	45
85	CNTRICS Final Task Selection: Control of Attention. Schizophrenia Bulletin, 2009, 35, 182-196.	4.3	84
86	Interactions between cognition and circadian rhythms: Attentional demands modify circadian entrainment Behavioral Neuroscience, 2009, 123, 937-948.	1.2	36
87	The substantia innominata remains incognita: pressing research themes on basal forebrain neuroanatomy. Brain Structure and Function, 2008, 213, 11-15.	2.3	3
88	<i>Cholinergic Mediation of Attention</i> . Annals of the New York Academy of Sciences, 2008, 1129, 225-235.	3.8	160
89	Reporting statistical methods and statistical results in EJN. European Journal of Neuroscience, 2008, 28, 2363-2364.	2.6	41
90	Increases in cholinergic neurotransmission measured by using choline-sensitive microelectrodes: Enhanced detection by hydrolysis of acetylcholine on recording sites?. Neurochemistry International, 2008, 52, 1343-1350.	3.8	43

#	Article	IF	CITATIONS
91	Glutamatergic Contributions to Nicotinic Acetylcholine Receptor Agonist-Evoked Cholinergic Transients in the Prefrontal Cortex. Journal of Neuroscience, 2008, 28, 3769-3780.	3.6	134
92	Detection of the Moderately Beneficial Cognitive Effects of Low-Dose Treatment with Haloperidol or Clozapine in an Animal Model of the Attentional Impairments of Schizophrenia. Neuropsychopharmacology, 2008, 33, 2635-2647.	5.4	25
93	Rats and humans paying attention: Cross-species task development for translational research Neuropsychology, 2008, 22, 787-799.	1.3	101
94	Abnormal Neurotransmitter Release Underlying Behavioral and Cognitive Disorders: Toward Concepts of Dynamic and Function-Specific Dysregulation. Neuropsychopharmacology, 2007, 32, 1452-1461.	5.4	68
95	Cholinergic control of attention to cues guiding established performance versus learning: Theoretical comment on Maddux, Kerfoot, Chatterjee, and Holland (2007) Behavioral Neuroscience, 2007, 121, 233-235.	1.2	5
96	Modulators in concert for cognition: Modulator interactions in the prefrontal cortex. Progress in Neurobiology, 2007, 83, 69-91.	5.7	198
97	Prefrontal Acetylcholine Release Controls Cue Detection on Multiple Timescales. Neuron, 2007, 56, 141-154.	8.1	552
98	D2-like receptors in nucleus accumbens negatively modulate acetylcholine release in prefrontal cortex. Neuropharmacology, 2007, 53, 455-463.	4.1	27
99	Toward a Neuro-Cognitive Animal Model of the Cognitive Symptoms of Schizophrenia: Disruption of Cortical Cholinergic Neurotransmission Following Repeated Amphetamine Exposure in Attentional Task-Performing, but Not Non-Performing, Rats. Neuropsychopharmacology, 2007, 32, 2074-2086.	5.4	50
100	Glutamate receptors in nucleus accumbens mediate regionally selective increases in cortical acetylcholine release. Synapse, 2007, 61, 115-123.	1.2	33
101	Preclinical research into cognition enhancers. Trends in Pharmacological Sciences, 2006, 27, 602-608.	8.7	53
102	The consequences of atheoretical, task-driven experimentation: Theoretical comment on Paban, Chambon, Jaffard, and Alescio-Lautier (2005) Behavioral Neuroscience, 2006, 120, 493-495.	1.2	4
103	More attention must be paid: The neurobiology of attentional effort. Brain Research Reviews, 2006, 51, 145-160.	9.0	479
104	Augmented Prefrontal Acetylcholine Release during Challenged Attentional Performance. Cerebral Cortex, 2006, 16, 9-17.	2.9	127
105	Forebrain dopaminergic-cholinergic interactions, attentional effort, psychostimulant addiction and schizophrenia. , 2006, 98, 65-86.		13
106	Presynaptic regulation and neurotransmitter modulation of acetylcholine release. , 2006, , 99-112.		1
107	Microsphere embolism-induced cortical cholinergic deafferentation and impairments in attentional performance. European Journal of Neuroscience, 2005, 21, 3117-3132.	2.6	18
108	NMDA and dopamine interactions in the nucleus accumbens modulate cortical acetylcholine release. European Journal of Neuroscience, 2005, 22, 1731-1740.	2.6	46

#	Article	IF	CITATIONS
109	Choline transporters, cholinergic transmission and cognition. Nature Reviews Neuroscience, 2005, 6, 48-56.	10.2	349
110	Increased Capacity and Density of Choline Transporters Situated in Synaptic Membranes of the Right Medial Prefrontal Cortex of Attentional Task-Performing Rats. Journal of Neuroscience, 2005, 25, 3851-3856.	3.6	60
111	Cortical Cholinergic Transmission and Cortical Information Processing in Schizophrenia. Schizophrenia Bulletin, 2005, 31, 117-138.	4.3	134
112	Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Research Reviews, 2005, 48, 98-111.	9.0	625
113	Sensitized Attentional Performance and Fos-Immunoreactive Cholinergic Neurons in the Basal Forebrain of Amphetamine-Pretreated Rats. Biological Psychiatry, 2005, 57, 1138-1146.	1.3	28
114	Underconstrained thalamic activation + underconstrained top-down modulation of cortical input processing = underconstrained perceptions. Behavioral and Brain Sciences, 2004, 27, 803-804.	0.7	0
115	Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels. European Journal of Neuroscience, 2004, 20, 1545-1554.	2.6	113
116	Neurobiology of cognition in laboratory animals: challenges and opportunities. Neuroscience and Biobehavioral Reviews, 2004, 28, 643.	6.1	3
117	Animal cognition: defining the issues. Neuroscience and Biobehavioral Reviews, 2004, 28, 645-650.	6.1	66
118	Developmental origins of the age-related decline in cortical cholinergic function and associated cognitive abilities. Neurobiology of Aging, 2004, 25, 1127-1139.	3.1	135
119	Lateralized Attentional Functions of Cortical Cholinergic Inputs Behavioral Neuroscience, 2004, 118, 984-991.	1.2	29
120	Visceral Afferent Bias on Cortical Processing: Role of Adrenergic Afferents to the Basal Forebrain Cholinergic System Behavioral Neuroscience, 2004, 118, 1455-1459.	1.2	18
121	Ascending visceral regulation of cortical affective information processing. European Journal of Neuroscience, 2003, 18, 2103-2109.	2.6	150
122	Attentional functions of cortical cholinergic inputs: What does it mean for learning and memory?. Neurobiology of Learning and Memory, 2003, 80, 245-256.	1.9	246
123	Interactions between aging and cortical cholinergic deafferentation on attention⋆. Neurobiology of Aging, 2002, 23, 467-477.	3.1	47
124	Effects of acute and repeated systemic administration of ketamine on prefrontal acetylcholine release and sustained attention performance in rats. Psychopharmacology, 2002, 161, 168-179.	3.1	94
125	The neglected constituent of the basal forebrain corticopetal projection system: GABAergic projections. European Journal of Neuroscience, 2002, 15, 1867-1873.	2.6	105
126	Stimulation of cortical acetylcholine release following blockade of ionotropic glutamate receptors in nucleus accumbens. European Journal of Neuroscience, 2002, 16, 1259-1266.	2.6	24

#	Article	IF	CITATIONS
127	The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Research Reviews, 2001, 35, 146-160.	9.0	935
128	Psychotogenic properties of benzodiazepine receptor inverse agonists. Psychopharmacology, 2001, 156, 1-13.	3.1	46
129	Antisense oligodeoxynucleotide-induced suppression of basal forebrain NMDA-NR1 subunits selectively impairs visual attentional performance in rats. European Journal of Neuroscience, 2001, 14, 103-117.	2.6	20
130	Basal forebrain glutamatergic modulation of cortical acetylcholine release. Synapse, 2001, 39, 201-212.	1.2	61
131	Amphetamine-stimulated cortical acetylcholine release: role of the basal forebrain. Brain Research, 2001, 894, 74-87.	2.2	34
132	Dissociations between the effects of intra-accumbens administration of amphetamine and exposure to a novel environment on accumbens dopamine and cortical acetylcholine release. Brain Research, 2001, 894, 354-358.	2.2	11
133	The effects of manipulations of attentional demand on cortical acetylcholine release. Cognitive Brain Research, 2001, 12, 353-370.	3.0	83
134	Cortical cholinergic inputs mediate processing capacity: effects of 192 lgCâ€saporinâ€induced lesions on olfactory span performance. European Journal of Neuroscience, 2000, 12, 4505-4514.	2.6	1
135	Repeated pretreatment with amphetamine sensitizes increases in cortical acetylcholine release. Psychopharmacology, 2000, 151, 406-415.	3.1	41
136	Sustained Visual Attention Performance-Associated Prefrontal Neuronal Activity: Evidence for Cholinergic Modulation. Journal of Neuroscience, 2000, 20, 4745-4757.	3.6	210
137	Preclinical psychopharmacology of AIDS-associated dementia: lessons to be learned from the cognitive psychopharmacology of other dementias. Journal of Psychopharmacology, 2000, 14, 197-204.	4.0	9
138	Effects of intra-accumbens infusions of amphetamine or cis-flupenthixol on sustained attention performance in rats. Behavioural Brain Research, 2000, 116, 123-133.	2.2	17
139	Increases in cortical acetylcholine release during sustained attention performance in rats. Cognitive Brain Research, 2000, 9, 313-325.	3.0	223
140	Cortical cholinergic inputs mediate processing capacity: effects of 192 lgG-saporin-induced lesions on olfactory span performance. European Journal of Neuroscience, 2000, 12, 4505-4514.	2.6	32
141	Basal Forebrain Afferent Projections Modulating Cortical Acetylcholine, Attention, and Implications for Neuropsychiatric Disorders. Annals of the New York Academy of Sciences, 1999, 877, 368-382.	3.8	134
142	Intra-accumbens infusions of antisense oligodeoxynucleotides to one isoform of glutamic acid decarboxylase mRNA, GAD65, but not to GAD67 mRNA, impairs sustained attention performance in the rat. Cognitive Brain Research, 1999, 7, 269-283.	3.0	15
143	Abnormal regulation of corticopetal cholinergic neurons and impaired information processing in neuropsychiatric disorders. Trends in Neurosciences, 1999, 22, 67-74.	8.6	158
144	Tapping artificially into natural talents. Trends in Neurosciences, 1999, 22, 300-301.	8.6	11

#	Article	IF	CITATIONS
145	Effects of ovariectomy, 192 IgG-saporin-induced cortical cholinergic deafferentation, and administration of estradiol on sustained attention performance in rats Behavioral Neuroscience, 1999, 113, 1216-1232.	1.2	53
146	Anxiety and cardiovascular reactivity: the basal forebrain cholinergic link. Behavioural Brain Research, 1998, 94, 225-248.	2.2	228
147	Sustained attention performance in rats with intracortical infusions of 192 IgG-saporin-induced cortical cholinergic deafferentation: Effects of Physostigmine and FG 7142 Behavioral Neuroscience, 1998, 112, 1519-1525.	1.2	138
148	Operant performance and cortical acetylcholine release: role of response rate, reward density, and non-contingent stimuli. Cognitive Brain Research, 1997, 6, 23-36.	3.0	61
149	Cortical acetylcholine and processing capacity: effects of cortical cholinergic deafferentation on crossmodal divided attention in rats. Cognitive Brain Research, 1997, 6, 147-158.	3.0	171
150	Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Research Reviews, 1997, 23, 28-46.	9.0	665
151	Modulation of cognitive processes by transsynaptic activation of the basal forebrain. Behavioural Brain Research, 1997, 84, 1-22.	2.2	51
152	The cardiovascular startle response: Anxiety and the benzodiazepine receptor complex. Psychophysiology, 1997, 34, 348-357.	2.4	12
153	Behavioural Vigilance in Schizophrenia. British Journal of Psychiatry, 1996, 169, 781-789.	2.8	33
154	Trans-Synaptic Stimulation of Cortical Acetylcholine Release after Partial 192ÂlgG-Saporin-Induced Loss of Cortical Cholinergic Afferents. Journal of Neuroscience, 1996, 16, 6592-6600.	3.6	38
155	Brain imaging and cognitive neuroscience: Toward strong inference in attributing function to structure American Psychologist, 1996, 51, 13-21.	4.2	286
156	Behavioral vigilance following infusions of 192 IgG-saporin into the basal forebrain: Selectivity of the behavioral impairment and relation to cortical AChE-positive fiber density Behavioral Neuroscience, 1996, 110, 247-265.	1.2	398
157	Behavioral vigilance in rats: task validation and effects of age, amphetamine, and benzodiazepine receptor ligands. Psychopharmacology, 1995, 117, 340-357.	3.1	308
158	Stimulation of cortical acetylcholine efflux by FG 7142 measured with repeated microdialysis sampling. Synapse, 1995, 21, 324-331.	1.2	69
159	Bidirectional modulation of cortical acetylcholine efflux by infusion of benzodiazepine receptor ligands into the basal forebrain. Neuroscience Letters, 1995, 189, 31-34.	2.1	80
160	Crossmodal divided attention in rats: effects of chlordiazepoxide and scopolamine. Psychopharmacology, 1994, 115, 213-220.	3.1	67
161	Neuronal mechanisms of the attentional dysfunctions in senile dementia and schizophrenia: two sides of the same coin?. Psychopharmacology, 1994, 114, 539-550.	3.1	98
162	Cortical cholinergic deafferentation following the intracortical infusion of 192 IgG-saporin: a quantitative histochemical study. Brain Research, 1994, 663, 277-286.	2.2	81

#	Article	IF	CITATIONS
163	Bidirectional modulation of stimulated cortical acetylcholine release by benzodiazepine receptor ligands. Brain Research, 1993, 627, 267-274.	2.2	66
164	Toward modeling age-related changes of attentional abilities in rats: Simple and choice reaction time tasks and vigilance. Neurobiology of Aging, 1992, 13, 759-772.	3.1	51
165	Behavioral screening for cognition enhancers: from indiscriminate to valid testing: Part I. Psychopharmacology, 1992, 107, 144-159.	3.1	158
166	Behavioral screening for cognition enhancers: from indiscriminate to valid testing: Part II. Psychopharmacology, 1992, 107, 461-473.	3.1	107
167	Taking stock of cognition enhancers. Trends in Pharmacological Sciences, 1991, 12, 456-461.	8.7	103
168	Dopamine-GABA-cholinergic interactions and negative schizophrenic symptomatology. Behavioral and Brain Sciences, 1991, 14, 46-47.	0.7	2
169	Spontaneous exploration of a 6-arm radial tunnel maze by basal forebrain lesioned rats: effects of the benzodiazepine receptor antagonist ?-carboline ZK 93 426. Psychopharmacology, 1989, 98, 193-202.	3.1	42
170	Convergence of intra- and interhemispheric cortical afferents: Lack of collateralization and evidence for a subrhinal cell group projecting heterotopically. Journal of Comparative Neurology, 1985, 236, 283-296.	1.6	34
171	Collateral innervation of the medial and lateral prefrontal cortex by amygdaloid, thalamic, and brain-stem neurons. Journal of Comparative Neurology, 1984, 224, 445-460.	1.6	107
172	Afferents to the ventral tegmental nucleus of gudden in the mouse, rat, and cat. Journal of Comparative Neurology, 1984, 228, 509-541.	1.6	33
173	Aminergic Transmitter Systems in Cognitive Disorders. , 0, , 235-245.		0
174	Animal Models in Biological Psychiatry. , 0, , 37-44.		32
175	Psychophysiology. , 0, , 123-138.		5

176 Cognitive enhancers versus stimulants. , 0, , 136-151.

0