
David A Gewirtz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7390092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting tumor cell senescence and polyploidy as potential therapeutic strategies. Seminars in Cancer Biology, 2022, 81, 37-47.	9.6	32
2	Sorafenib, rapamycin, and venetoclax attenuate doxorubicin-induced senescence and promote apoptosis in HCT116 cells. Saudi Pharmaceutical Journal, 2022, 30, 91-101.	2.7	4
3	Is Autophagy Always a Barrier to Cisplatin Therapy?. Biomolecules, 2022, 12, 463.	4.0	23
4	Considering therapy-induced senescence as a mechanism of tumour dormancy contributing to disease recurrence. British Journal of Cancer, 2022, 126, 1363-1365.	6.4	21
5	Senolytic-Mediated Elimination of Head and Neck Tumor Cells Induced Into Senescence by Cisplatin. Molecular Pharmacology, 2022, 101, 168-180.	2.3	13
6	Knockout of fatty acid amide hydrolase (FAAH) gene attenuates cisplatinâ€induced nephrotoxicity in mice. FASEB Journal, 2022, 36, .	0.5	0
7	Formulated Curcumin Prevents Paclitaxel-Induced Peripheral Neuropathy through Reduction in Neuroinflammation by Modulation of α7 Nicotinic Acetylcholine Receptors. Pharmaceutics, 2022, 14, 1296.	4.5	5
8	The Cytoprotective, Cytotoxic and Nonprotective Functional Forms of Autophagy Induced by Microtubule Poisons in Tumor Cells—Implications for Autophagy Modulation as a Therapeutic Strategy. Biomedicines, 2022, 10, 1632.	3.2	11
9	Loss of sphingosine kinase 2 protects against cisplatin-induced kidney injury. American Journal of Physiology - Renal Physiology, 2022, 323, F322-F334.	2.7	3
10	Preface. Advances in Cancer Research, 2021, 150, xiii-xviii.	5.0	0
11	Senolytics for Cancer Therapy: Is All that Glitters Really Gold?. Cancers, 2021, 13, 723.	3.7	68
12	Nâ€acylethanolamineâ€hydrolysing acid amidase: A new potential target to treat paclitaxelâ€induced neuropathy. European Journal of Pain, 2021, 25, 1367-1380.	2.8	5
13	Targeting Peroxisome Proliferator-Activated Receptor-α (PPAR- α) to reduce paclitaxel-induced peripheral neuropathy. Brain, Behavior, and Immunity, 2021, 93, 172-185.	4.1	24
14	Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy. Journal of the National Cancer Institute, 2021, 113, 1285-1298.	6.3	156
15	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	7.8	615
16	Androgen-deprivation induced senescence in prostate cancer cells is permissive for the development of castration-resistance but susceptible to senolytic therapy. Biochemical Pharmacology, 2021, 193, 114765.	4.4	20
17	Senescence in prostate cancer: is there sufficient evidence to move forward?. Minerva Urology and Nephrology, 2021, 73, 421-423.	2.5	0
18	Autophagy and senescence in cancer therapy. Advances in Cancer Research, 2021, 150, 1-74.	5.0	16

#	Article	IF	CITATIONS
19	A Fenofibrate Diet Prevents Paclitaxel-Induced Peripheral Neuropathy in Mice. Cancers, 2021, 13, 69.	3.7	14
20	The lysosome as an imperative regulator of autophagy and cell death. Cellular and Molecular Life Sciences, 2021, 78, 7435-7449.	5.4	68
21	Roles of autophagy in breast cancer treatment: Target, bystander or benefactor. Seminars in Cancer Biology, 2020, 66, 155-162.	9.6	29
22	Senescence and castration resistance in prostate cancer: A review of experimental evidence and clinical implications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188424.	7.4	8
23	"Emerging Conceptsâ€: New Article Category in Molecular Pharmacology. Molecular Pharmacology, 2020, 98, 350-350.	2.3	1
24	Fluvastatin Induces Apoptosis in Primary and Transformed Mast Cells. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 104-112.	2.5	6
25	Influence of nonprotective autophagy and the autophagic switch on sensitivity to cisplatin in non-small cell lung cancer cells. Biochemical Pharmacology, 2020, 175, 113896.	4.4	15
26	Clearance of therapyâ€induced senescent tumor cells by the senolytic ABTâ€263 via interference with BCLâ€X _L –BAX interaction. Molecular Oncology, 2020, 14, 2504-2519.	4.6	90
27	Studies of Non-Protective Autophagy Provide Evidence that Recovery from Therapy-Induced Senescence is Independent of Early Autophagy. International Journal of Molecular Sciences, 2020, 21, 1427.	4.1	11
28	The Switch between Protective and Nonprotective Autophagy; Implications for Autophagy Inhibition as a Therapeutic Strategy in Cancer. Biology, 2020, 9, 12.	2.8	21
29	Therapy-Induced Senescence: An "Old―Friend Becomes the Enemy. Cancers, 2020, 12, 822.	3.7	168
30	The α7 nicotinic receptor silent agonist R-47 prevents and reverses paclitaxel-induced peripheral neuropathy in mice without tolerance or altering nicotine reward and withdrawal. Experimental Neurology, 2019, 320, 113010.	4.1	23
31	Tumor Cell Escape from Therapy-Induced Senescence as a Model of Disease Recurrence after Dormancy. Cancer Research, 2019, 79, 1044-1046.	0.9	165
32	Tumor cell escape from therapy-induced senescence. Biochemical Pharmacology, 2019, 162, 202-212.	4.4	105
33	Young plasma attenuates ageâ€dependent liver ischemia reperfusion injury. FASEB Journal, 2019, 33, 3063-3073.	0.5	15
34	The potentially conflicting cell autonomous and cell non-autonomous functions of autophagy in mediating tumor response to cancer therapy. Biochemical Pharmacology, 2018, 153, 46-50.	4.4	7
35	Monoacylglycerol Lipase Inhibitors Reverse Paclitaxel-Induced Nociceptive Behavior and Proinflammatory Markers in a Mouse Model of Chemotherapy-Induced Neuropathy. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 169-183.	2.5	57
36	Nicotine Prevents and Reverses Paclitaxel-Induced Mechanical Allodynia in a Mouse Model of CIPN. Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 110-119.	2.5	32

#	Article	IF	CITATIONS
37	Young plasma reverses ageâ€dependent alterations in hepatic function through the restoration of autophagy. Aging Cell, 2018, 17, e12708.	6.7	53
38	Differential Radiation Sensitivity in p53 Wild-Type and p53-Deficient Tumor Cells Associated with Senescence but not Apoptosis or (Nonprotective) Autophagy. Radiation Research, 2018, 190, 538.	1.5	21
39	Non-Cell Autonomous Effects of the Senescence-Associated Secretory Phenotype in Cancer Therapy. Frontiers in Oncology, 2018, 8, 164.	2.8	61
40	The Influence of Nicotine on Lung Tumor Growth, Cancer Chemotherapy, and Chemotherapy-Induced Peripheral Neuropathy. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 303-313.	2.5	14
41	Effects of paclitaxel on the development of neuropathy and affective behaviors in the mouse. Neuropharmacology, 2017, 117, 305-315.	4.1	95
42	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	7.8	1,230
43	Proteomics Insights into Autophagy. Proteomics, 2017, 17, 1700022.	2.2	10
44	Importance of Autophagy in Mediating Human Immunodeficiency Virus (HIV) and Morphine-Induced Metabolic Dysfunction and Inflammation in Human Astrocytes. Viruses, 2017, 9, 201.	3.3	29
45	The Challenge of Developing Autophagy Inhibition as a Therapeutic Strategy. Cancer Research, 2016, 76, 5610-5614.	0.9	49
46	Autophagy is not uniformly cytoprotective: a personalized medicine approach for autophagy inhibition as a therapeutic strategy in non-small cell lung cancer. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2130-2136.	2.4	25
47	Radiosensitization by PARP Inhibition in DNA Repair Proficient and Deficient Tumor Cells: Proliferative Recovery in Senescent Cells. Radiation Research, 2016, 185, 229.	1.5	66
48	Is Senescence Reversible?. Current Drug Targets, 2016, 17, 460-466.	2.1	69
49	Role of Interleukin-1 in Radiation-Induced Cardiomyopathy. Molecular Medicine, 2015, 21, 210-218.	4.4	31
50	Autophagy in malignant transformation and cancer progression. EMBO Journal, 2015, 34, 856-880.	7.8	1,012
51	Yet Another Function of p53—The Switch That Determines Whether Radiation-Induced Autophagy Will Be Cytoprotective or Nonprotective: Implications for Autophagy Inhibition as a Therapeutic Strategy. Molecular Pharmacology, 2015, 87, 803-814.	2.3	43
52	HIV-1 and Morphine Regulation of Autophagy in Microglia: Limited Interactions in the Context of HIV-1 Infection and Opioid Abuse. Journal of Virology, 2015, 89, 1024-1035.	3.4	74
53	When cytoprotective autophagy isn't… and even when it is. Autophagy, 2014, 10, 391-392.	9.1	22
54	A novel cytostatic form of autophagy in sensitization of non-small cell lung cancer cells to radiation by vitamin D and the vitamin D analog, EB 1089. Autophagy, 2014, 10, 2346-2361.	9.1	79

#	Article	IF	CITATIONS
55	Outcome of early clinical trials of the combination of hydroxychloroquine with chemotherapy in cancer. Autophagy, 2014, 10, 1478-1480.	9.1	77
56	The Autophagic Response to Radiation: Relevance for Radiation Sensitization in Cancer Therapy. Radiation Research, 2014, 182, 363-367.	1.5	36
57	The Four Faces of Autophagy: Implications for Cancer Therapy. Cancer Research, 2014, 74, 647-651.	0.9	369
58	An autophagic switch in the response of tumor cells to radiation and chemotherapy. Biochemical Pharmacology, 2014, 90, 208-211.	4.4	40
59	Autophagy and radiosensitization in cancer. EXCLI Journal, 2014, 13, 178-91.	0.7	14
60	Autophagy and senescence in cancer therapy. Journal of Cellular Physiology, 2013, 229, n/a-n/a.	4.1	87
61	Cytoprotective and nonprotective autophagy in cancer therapy. Autophagy, 2013, 9, 1263-1265.	9.1	50
62	Autophagy and senescence. Autophagy, 2013, 9, 808-812.	9.1	146
63	The Autophagy-Senescence Connection in Chemotherapy: Must Tumor Cells (Self) Eat Before They Sleep?. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 763-778.	2.5	112
64	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
65	A Switch Between Cytoprotective and Cytotoxic Autophagy in the Radiosensitization of Breast Tumor Cells by Chloroquine and Vitamin D. Hormones and Cancer, 2011, 2, 272-285.	4.9	101
66	Autophagy, senescence and tumor dormancy in cancer therapy. Autophagy, 2009, 5, 1232-1234.	9.1	118
67	Promotion of autophagy as a mechanism for radiation sensitization of breast tumor cells. Radiotherapy and Oncology, 2009, 92, 323-328.	0.6	80
68	Colchicine site inhibitors of microtubule integrity as vascular disrupting agents. Drug Development Research, 2008, 69, 352-358.	2.9	31
69	Accelerated senescence: An emerging role in tumor cell response to chemotherapy and radiation. Biochemical Pharmacology, 2008, 76, 947-957.	4.4	246
70	Autophagy as a Mechanism of Radiation Sensitization in Breast Tumor Cells. Autophagy, 2007, 3, 249-250.	9.1	25
71	Caveolin and stat-5 signaling: Potential overlap in lactation and breast tumor promotion. Cancer Biology and Therapy, 2006, 5, 298-299.	3.4	0
72	Erythropoietin Fails to Interfere with the Antiproliferative and Cytotoxic Effects of Antitumor Drugs. Clinical Cancer Research, 2006, 12, 2232-2238.	7.0	50

#	Article	IF	CITATIONS
73	The vitamin D 3 analog, ILX-23-7553, enhances the response to Adriamycin and irradiation in MCF-7 breast tumor cells. Cancer Chemotherapy and Pharmacology, 2001, 47, 429-436.	2.3	65
74	Influence of Topoisomerase II Inhibitors and Ionizing Radiation on Growth Arrest and Cell Death Pathways in the Breast Tumor Cell. Cell Biochemistry and Biophysics, 2000, 33, 19-31.	1.8	12
75	Estradiol enhances gene delivery to human breast tumor cells. Journal of Molecular Medicine, 1998, 76, 709-714.	3.9	12
76	Effects of Tamoxifen on the Radiosensitivity of Hormonally Responsive and Unresponsive Breast Carcinoma Cells. Radiation Oncology Investigations, 1993, 1, 20-28.	0.9	14