Tetsuya Tabata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/739009/publications.pdf Version: 2024-02-01

Τετςιίνα Τάβατα

#	Article	IF	CITATIONS
1	Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell, 1994, 76, 89-102.	28.9	609
2	Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature, 1997, 389, 627-631.	27.8	402
3	Morphogens, their identification and regulation. Development (Cambridge), 2004, 131, 703-712.	2.5	394
4	Hedgehog Creates a Gradient of DPP Activity in Drosophila Wing Imaginal Discs. Molecular Cell, 2000, 5, 59-71.	9.7	375
5	Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development (Cambridge), 2004, 131, 73-82.	2.5	251
6	<i>Drosophila</i> optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT. Development (Cambridge), 2008, 135, 1471-1480.	2.5	146
7	Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the <i>Drosophila</i> optic lobe. Development (Cambridge), 2010, 137, 3193-3203.	2.5	96
8	Interplay of Signal Mediators of Decapentaplegic (Dpp): Molecular Characterization of Mothers against dpp, Medea, and Daughters against dpp. Molecular Biology of the Cell, 1998, 9, 2145-2156.	2.1	94
9	DWnt4 regulates the dorsoventral specificity of retinal projections in the Drosophila melanogaster visual system. Nature Neuroscience, 2006, 9, 67-75.	14.8	72
10	The NAV2 homolog Sickie regulates F-actin-mediated axonal growth in Drosophila mushroom body neurons via the non-canonical Rac-Cofilin pathway. Development (Cambridge), 2014, 141, 4716-4728.	2.5	39
11	Fat / Hippo pathway regulates the progress of neural differentiation signaling in the Drosophila optic lobe. Development Growth and Differentiation, 2011, 53, 653-667.	1.5	36
12	Robustness of the Dpp morphogen activity gradient depends on negative feedback regulation by the inhibitory Smad, Dad. Development Growth and Differentiation, 2011, 53, 668-678.	1.5	34
13	Two Parallel Pathways Assign Opposing Odor Valences during Drosophila Memory Formation. Cell Reports, 2018, 22, 2346-2358.	6.4	34
14	DISCO Interacting Protein 2 regulates axonal bifurcation and guidance of Drosophila mushroom body neurons. Developmental Biology, 2017, 421, 233-244.	2.0	28
15	Suppression of a single pair of mushroom body output neurons in <i>Drosophila</i> triggers aversive associations. FEBS Open Bio, 2017, 7, 562-576.	2.3	22
16	Optimizing Drosophila olfactory learning with a semi-automated training device. Journal of Neuroscience Methods, 2010, 188, 195-204.	2.5	11
17	Principal component analysis of odor coding at the level of thirdâ€order olfactory neurons in <i><scp>D</scp>rosophila</i> . Genes To Cells, 2013, 18, 1070-1081.	1.2	8
18	Two Components of Aversive Memory in Drosophila, Anesthesia-Sensitive and Anesthesia-Resistant Memory, Require Distinct Domains Within the Rgk1 Small GTPase. Journal of Neuroscience, 2017, 37, 5496-5510.	3.6	8