List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7389796/publications.pdf Version: 2024-02-01

		6250	7736
321	24,617	80	150
papers	citations	h-index	g-index
			0.40.60
325	325	325	24263
all docs	docs citations	times ranked	citing authors

EDIC DOD

#	Article	lF	CITATIONS
1	Electro-Thermal Confinement Enables Improved Superlattice Phase Change Memory. IEEE Electron Device Letters, 2022, 43, 204-207.	2.2	11
2	Temperature-dependent thermal resistance of phase change memory. Applied Physics Letters, 2022, 120, 113501.	1.5	1
3	Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nature Communications, 2022, 13, 1696.	5.8	125
4	Direct measurement of nanoscale filamentary hot spots in resistive memory devices. Science Advances, 2022, 8, eabk1514.	4.7	20
5	Nonequilibrium Phonon Thermal Resistance at MoS ₂ /Oxide and Graphene/Oxide Interfaces. ACS Applied Materials & Interfaces, 2022, 14, 22372-22380.	4.0	14
6	Substrate-dependence of monolayer MoS2 thermal conductivity and thermal boundary conductance. Journal of Applied Physics, 2022, 131, .	1.1	11
7	Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nature Nanotechnology, 2022, 17, 842-848.	15.6	94
8	Reduced thermal conductivity of supported and encased monolayer and bilayer MoS ₂ . 2D Materials, 2021, 8, 011001.	2.0	29
9	High Current Density in Monolayer MoS ₂ Doped by AlO _{<i>x</i>} . ACS Nano, 2021, 15, 1587-1596.	7.3	116
10	Dynamic Hybrid Metasurfaces. Nano Letters, 2021, 21, 1238-1245.	4.5	85
11	Tuning electrical and interfacial thermal properties of bilayer MoS ₂ via electrochemical intercalation. Nanotechnology, 2021, 32, 265202.	1.3	3
12	Carbon nanotube thermoelectric devices by direct printing: Toward wearable energy converters. Applied Physics Letters, 2021, 118, .	1.5	7
13	High-Performance p–n Junction Transition Metal Dichalcogenide Photovoltaic Cells Enabled by MoO _{<i>x</i>} Doping and Passivation. Nano Letters, 2021, 21, 3443-3450.	4.5	35
14	Spectral decomposition of thermal conductivity: Comparing velocity decomposition methods in homogeneous molecular dynamics simulations. Physical Review B, 2021, 103, .	1.1	30
15	Ultrathin Three-Monolayer Tunneling Memory Selectors. ACS Nano, 2021, 15, 8484-8491.	7.3	8
16	Advanced Data Encryption using 2D Materials. Advanced Materials, 2021, 33, e2100185.	11.1	67
17	High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nature Electronics, 2021, 4, 495-501.	13.1	117
18	Uncovering Phase Change Memory Energy Limits by Subâ€Nanosecond Probing of Power Dissipation Dynamics. Advanced Electronic Materials. 2021. 7. 2100217.	2.6	8

#	Article	IF	CITATIONS
19	Graphene-based electromechanical thermal switches. 2D Materials, 2021, 8, 035055.	2.0	4
20	Field-effect at electrical contacts to two-dimensional materials. Nano Research, 2021, 14, 4894-4900.	5.8	11
21	Uncovering Thermal and Electrical Properties of Sb ₂ Te ₃ /GeTe Superlattice Films. Nano Letters, 2021, 21, 5984-5990.	4.5	31
22	Toward Low-Temperature Solid-Source Synthesis of Monolayer MoS ₂ . ACS Applied Materials & Interfaces, 2021, 13, 41866-41874.	4.0	21
23	Vibrational Properties of a Naturally Occurring Semiconducting van der Waals Heterostructure. Journal of Physical Chemistry C, 2021, 125, 21607-21613.	1.5	4
24	Application-driven synthesis and characterization of hexagonal boron nitride deposited on metals and carbon nanotubes. 2D Materials, 2021, 8, 045024.	2.0	2
25	Ultralow–switching current density multilevel phase-change memory on a flexible substrate. Science, 2021, 373, 1243-1247.	6.0	78
26	Sub-Nanosecond Pulses Enable Partial Reset for Analog Phase Change Memory. IEEE Electron Device Letters, 2021, 42, 1291-1294.	2.2	9
27	Transistors based on two-dimensional materials for future integrated circuits. Nature Electronics, 2021, 4, 786-799.	13.1	335
28	Engineering Thermal Transport across Layered Graphene–MoS ₂ Superlattices. ACS Nano, 2021, 15, 19503-19512.	7.3	16
29	High-specific-power flexible transition metal dichalcogenide solar cells. Nature Communications, 2021, 12, 7034.	5.8	84
30	Diamond Integration on GaN for Channel Temperature Reduction. , 2021, , .		3
31	Sub-200 Ω·µm Alloyed Contacts to Synthetic Monolayer MoS2. , 2021, , .		19
32	Lateral electrical transport and field-effect characteristics of sputtered p-type chalcogenide thin films. Applied Physics Letters, 2021, 119, 232106.	1.5	3
33	Ultra-scaled MoS ₂ transistors and circuits fabricated without nanolithography. 2D Materials, 2020, 7, 015018.	2.0	41
34	VO ₂ Switch for Electrostatic Discharge Protection. IEEE Electron Device Letters, 2020, 41, 292-295.	2.2	3
35	Improved Current Density and Contact Resistance in Bilayer MoSe ₂ Field Effect Transistors by AlO _{<i>x</i>} Capping. ACS Applied Materials & Interfaces, 2020, 12, 36355-36361.	4.0	31
36	Flexible Low-Power Superlattice-Like Phase Change Memory. , 2020, , .		0

Flexible Low-Power Superlattice-Like Phase Change Memory. , 2020, , . 36

1

#	Article	IF	CITATIONS
37	Two-Fold Reduction of Switching Current Density in Phase Change Memory Using Biâ,,Teâ,ƒ Thermoelectric Interfacial Layer. IEEE Electron Device Letters, 2020, 41, 1657-1660.	2.2	17
38	Ultrahigh Doping of Graphene Using Flame-Deposited MoO ₃ . IEEE Electron Device Letters, 2020, 41, 1592-1595.	2.2	11
39	Thermal Boundary Conductance: Visualizing Energy Transfer at Buried Interfaces in Layered Materials Using Picosecond Xâ€Rays (Adv. Funct. Mater. 34/2020). Advanced Functional Materials, 2020, 30, 2070232.	7.8	1
40	Uncovering the Effects of Metal Contacts on Monolayer MoS ₂ . ACS Nano, 2020, 14, 14798-14808.	7.3	89
41	Large temperature coefficient of resistance in atomically thin two-dimensional semiconductors. Applied Physics Letters, 2020, 116, .	1.5	26
42	Visualizing Energy Transfer at Buried Interfaces in Layered Materials Using Picosecond Xâ€Rays. Advanced Functional Materials, 2020, 30, 2002282.	7.8	11
43	Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater. Advanced Materials, 2020, 32, e2001218.	11.1	152
44	Monolithic mtesla-level magnetic induction by self-rolled-up membrane technology. Science Advances, 2020, 6, eaay4508.	4.7	35
45	Stacking Independence and Resonant Interlayer Excitation of Monolayer WSe ₂ /MoSe ₂ Heterostructures for Photocatalytic Energy Conversion. ACS Applied Nano Materials, 2020, 3, 1175-1181.	2.4	7
46	Localized Heating and Switching in MoTe ₂ -Based Resistive Memory Devices. Nano Letters, 2020, 20, 1461-1467.	4.5	38
47	Transient hot-carrier dynamics and intrinsic velocity saturation in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m mathvariant="normal">S<mml:mn>2</mml:mn></mml:m></mml:msub></mml:mrow></mml:math> . Physical Review Materials, 2020, 4, .	ⁿⁱ 0.9	15
48	Phase change material integrated silicon photonics: GST and beyond. , 2020, , .		4
49	Highly confined plasmons in individual single-walled carbon nanotube nanoantennas. , 2020, , .		0
50	Nonvolatile Electrically Reconfigurable Integrated Photonic Switches Using Phase-Change Materials. , 2020, , .		1
51	Localized Triggering of the Insulator-Metal Transition in VO ₂ Using a Single Carbon Nanotube. ACS Nano, 2019, 13, 11070-11077.	7.3	25
52	Thermal boundary conductance of two-dimensional MoS2 interfaces. Journal of Applied Physics, 2019, 126, .	1.1	32
53	Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. Science Advances, 2019, 5, eaax1325.	4.7	149
			_

⁵⁴ 3D Heterogeneous Integration with 2D Materials. , 2019, , .

#	Article	IF	CITATIONS
55	Fast Spiking of a Mott VO ₂ –Carbon Nanotube Composite Device. Nano Letters, 2019, 19, 6751-6755.	4.5	56
56	Contact Engineering High-Performance n-Type MoTe ₂ Transistors. Nano Letters, 2019, 19, 6352-6362.	4.5	87
57	Layer-Dependent Interfacial Transport and Optoelectrical Properties of MoS ₂ on Ultraflat Metals. ACS Applied Materials & Interfaces, 2019, 11, 31543-31550.	4.0	33
58	Temperature-Dependent Contact Resistance to Nonvolatile Memory Materials. IEEE Transactions on Electron Devices, 2019, 66, 3816-3821.	1.6	15
59	Process-induced anomalous current transport in graphene/InAlN/GaN heterostructured diodes. , 2019, , .		1
60	Dry Transfer of van der Waals Crystals to Noble Metal Surfaces To Enable Characterization of Buried Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 38218-38225.	4.0	20
61	Significant Phonon Drag Enables High Power Factor in the AlGaN/GaN Two-Dimensional Electron Gas. Nano Letters, 2019, 19, 3770-3776.	4.5	13
62	Understanding the switching mechanism of interfacial phase change memory. Journal of Applied Physics, 2019, 125, .	1.1	35
63	Strain- and Strain-Rate-Invariant Conductance in a Stretchable and Compressible 3D Conducting Polymer Foam. Matter, 2019, 1, 205-218.	5.0	58
64	Energy-Efficient Indirectly Heated Phase Change RF Switch. IEEE Electron Device Letters, 2019, 40, 455-458.	2.2	24
65	Thermal transport in layer-by-layer assembled polycrystalline graphene films. Npj 2D Materials and Applications, 2019, 3, .	3.9	28
66	Engineering thermal and electrical interface properties of phase change memory with monolayer MoS2. Applied Physics Letters, 2019, 114, .	1.5	36
67	Ternary content-addressable memory with MoS2 transistors for massively parallel data search. Nature Electronics, 2019, 2, 108-114.	13.1	83
68	Plasmon-Resonant Enhancement of Photocatalysis on Monolayer WSe ₂ . ACS Photonics, 2019, 6, 787-792.	3.2	43
69	Thermal transport in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoS</mml:mi> <mml:mn>2from molecular dynamics using different empirical potentials. Physical Review B, 2019, 99, .</mml:mn></mml:msub></mml:math 	l:m m.x <td>ກ່:ເສອub><!--ເຫ</td--></td>	ກ ່:ເສອ ub> ເຫ</td
70	Quasi-Ballistic Thermal Transport Across MoS ₂ Thin Films. Nano Letters, 2019, 19, 2434-2442.	4.5	61
71	Strongly tunable anisotropic thermal transport in MoS ₂ by strain and lithium intercalation: first-principles calculations. 2D Materials, 2019, 6, 025033.	2.0	31
72	Flexible Top-Gated Monolayer MoS2 Transistors with High Mobility. , 2019, , .		0

#	Article	IF	CITATIONS
73	Vertical Sidewall MoS ₂ Growth and Transistors. , 2019, , .		2
74	Large Temperature Coefficient of Resistance in Atomically Thin 2D Devices. , 2019, , .		1
75	Thermal conductivity of crystalline AlN and the influence of atomic-scale defects. Journal of Applied Physics, 2019, 126, .	1.1	75
76	Spatial Separation of Carrier Spin by the Valley Hall Effect in Monolayer WSe ₂ Transistors. Nano Letters, 2019, 19, 770-774.	4.5	31
77	Thermal transport across graphene step junctions. 2D Materials, 2019, 6, 011005.	2.0	15
78	Reduction of hysteresis in MoS ₂ transistors using pulsed voltage measurements. 2D Materials, 2019, 6, 011004.	2.0	39
79	Recommended Methods to Study Resistive Switching Devices. Advanced Electronic Materials, 2019, 5, 1800143.	2.6	452
80	Reconfigurable infrared spectral imaging with phase change materials. , 2019, , .		6
81	Nonvolatile Electrically Reconfigurable Silicon Photonic Switches Using Phase-Change Materials. , 2019, , .		2
82	Carbon nanomaterials for non-volatile memories. Nature Reviews Materials, 2018, 3, .	23.3	87
83	Unipolar n-Type Black Phosphorus Transistors with Low Work Function Contacts. Nano Letters, 2018, 18, 2822-2827.	4.5	40
84	Microstructural origin of resistance–strain hysteresis in carbon nanotube thin film conductors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1986-1991.	3.3	107
85	Ultra-low contact resistance in graphene devices at the Dirac point. 2D Materials, 2018, 5, 025014.	2.0	50
86	Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials. Npj Computational Materials, 2018, 4, .	3.5	40
87	Nanoscale Heterogeneities in Monolayer MoSe ₂ Revealed by Correlated Scanning Probe Microscopy and Tip-Enhanced Raman Spectroscopy. ACS Applied Nano Materials, 2018, 1, 572-579.	2.4	45
88	Tuning Electrical and Thermal Transport in AlGaN/GaN Heterostructures via Buffer Layer Engineering. Advanced Functional Materials, 2018, 28, 1705823.	7.8	19
89	Probing the Optical Properties and Strain-Tuning of Ultrathin Mo _{1–<i>x</i>} W _{<i>x</i>} Te ₂ . Nano Letters, 2018, 18, 2485-2491. 	4.5	53
90	Flexural resonance mechanism of thermal transport across graphene-SiO2 interfaces. Journal of Applied Physics, 2018, 123, .	1.1	24

#	Article	IF	CITATIONS
91	3D Monolithic Stacked 1T1R cells using Monolayer MoS <inf>2</inf> FET and hBN RRAM Fabricated at Low (150°C) Temperature. , 2018, , .		25
92	Investigation of monolayer MX <inf>2</inf> as sub-nanometer copper diffusion barriers. , 2018, , .		4
93	An electrochemical thermal transistor. Nature Communications, 2018, 9, 4510.	5.8	105
94	Probing Self-Heating in RRAM Devices by Sub-100 nm Spatially Resolved Thermometry. , 2018, , .		5
95	Localized Heating in Mo'l'ei-Based Resistive Memory Devices. , 2018, , .		0
96	Sub-Thermionic Steep Switching in Hole-Doped WSe2 Transistors. , 2018, , .		2
97	Thermoelectrics: Tuning Electrical and Thermal Transport in AlGaN/GaN Heterostructures via Buffer Layer Engineering (Adv. Funct. Mater. 22/2018). Advanced Functional Materials, 2018, 28, 1870152.	7.8	3
98	Detection of Methylation on dsDNA at Single-Molecule Level using Solid-State Nanopores. Biophysical Journal, 2018, 114, 216a.	0.2	1
99	High-Field Transport and Velocity Saturation in Synthetic Monolayer MoS ₂ . Nano Letters, 2018, 18, 4516-4522.	4.5	103
100	The Heat Conduction Renaissance. , 2018, , .		5
101	Non-volatile All-Optical Quasi-Continuous Switching in GST-on-Silicon Microring Resonators. , 2018, ,		0
102	GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Optical Materials Express, 2018, 8, 1551.	1.6	166
103	Electronic synapses made of layered two-dimensional materials. Nature Electronics, 2018, 1, 458-465.	13.1	459
104	Energy-Efficient Phase Change Memory Programming by Nanosecond Pulses. , 2018, , .		3
105	Low Power Nanoscale Switching of VO ₂ using Carbon Nanotube Heaters. , 2018, , .		0
106	Research Update: Recent progress on 2D materials beyond graphene: From ripples, defects, intercalation, and valley dynamics to straintronics and power dissipation. APL Materials, 2018, 6, .	2.2	30
107	Characterization of Graphene Gate Electrodes for Metal-Oxide-Semiconductor Devices. MRS Advances, 2017, 2, 103-108.	0.5	1
108	Photoresponse of Natural van der Waals Heterostructures. ACS Nano, 2017, 11, 6024-6030.	7.3	44

#	Article	IF	CITATIONS
109	Reducing graphene device variability with yttrium sacrificial layers. Applied Physics Letters, 2017, 110, .	1.5	12
110	Rapid Flame Synthesis of Atomically Thin MoO ₃ down to Monolayer Thickness for Effective Hole Doping of WSe ₂ . Nano Letters, 2017, 17, 3854-3861.	4.5	120
111	High-Gain Graphene Transistors with a Thin AlOx Top-Gate Oxide. Scientific Reports, 2017, 7, 2419.	1.6	36
112	Effect of oxygen vacancies and strain on the phonon spectrum of HfO2 thin films. Journal of Applied Physics, 2017, 121, .	1.1	10
113	Energy Dissipation in Monolayer MoS ₂ Electronics. Nano Letters, 2017, 17, 3429-3433.	4.5	177
114	Intrinsic electrical transport and performance projections of synthetic monolayer MoS ₂ devices. 2D Materials, 2017, 4, 011009.	2.0	117
115	Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS ₂ by Raman Thermometry. ACS Applied Materials & Interfaces, 2017, 9, 43013-43020.	4.0	125
116	HfSe ₂ and ZrSe ₂ : Two-dimensional semiconductors with native high-Î⁰ oxides. Science Advances, 2017, 3, e1700481.	4.7	197
117	High-Velocity Saturation in Graphene Encapsulated by Hexagonal Boron Nitride. ACS Nano, 2017, 11, 9914-9919.	7.3	89
118	A Systems Approach to Computing in Beyond CMOS Fabrics. , 2017, , .		1
119	In Quest of the Next Information Processing Substrate. , 2017, , .		Ο
119 120	In Quest of the Next Information Processing Substrate. , 2017, , . Detection of methylation on dsDNA using nanopores in a MoS ₂ membrane. Nanoscale, 2017, 9, 14836-14845.	2.8	0 34
119 120 121	In Quest of the Next Information Processing Substrate. , 2017, , . Detection of methylation on dsDNA using nanopores in a MoS ₂ membrane. Nanoscale, 2017, 9, 14836-14845. Large array fabrication of high performance monolayer MoS2 photodetectors. Applied Physics Letters, 2017, 111, .	2.8	0 34 38
119 120 121 122	In Quest of the Next Information Processing Substrate. , 2017, , . Detection of methylation on dsDNA using nanopores in a MoS ₂ membrane. Nanoscale, 2017, 9, 14836-14845. Large array fabrication of high performance monolayer MoS2 photodetectors. Applied Physics Letters, 2017, 111, . Effective n-type doping of monolayer MoS<inf>2</inf> by AlO<inf>x</inf>. , 2017, , .	2.8	0 34 38 20
119 120 121 122 123	In Quest of the Next Information Processing Substrate., 2017, ,.Detection of methylation on dsDNA using nanopores in a MoS ₂ membrane. Nanoscale, 2017, 9, 14836-14845.Large array fabrication of high performance monolayer MoS2 photodetectors. Applied Physics Letters, 2017, 111, .Effective n-type doping of monolayer MoS<inf>2</inf> by AlO<inf>x</inf>., 2017, ,.Electrons, phonons, and unconventional applications of 2D materials., 2017, ,.	2.8	0 34 38 20
 119 120 121 122 123 124 	In Quest of the Next Information Processing Substrate., 2017,,. Detection of methylation on dsDNA using nanopores in a MoS ₂ membrane. Nanoscale, 2017, 9, 14836-14845. Large array fabrication of high performance monolayer MoS2 photodetectors. Applied Physics Letters, 2017, 111,. Effective n-type doping of monolayer MoS<inf>2</inf> by AlO<inf>x</inf>., 2017, ,. Electrons, phonons, and unconventional applications of 2D materials., 2017, ,. Studies of two-dimensional h-BN and MoS2 for potential diffusion barrier application in copper interconnect technology. Npj 2D Materials and Applications, 2017, 1,.	2.8 1.5 3.9	0 34 38 20 0 57
 119 120 121 122 123 124 125 	In Quest of the Next Information Processing Substrate., 2017,,. Detection of methylation on dsDNA using nanopores in a MoS ₂ membrane. Nanoscale, 2017, 9, 14836-14845. Large array fabrication of high performance monolayer MoS2 photodetectors. Applied Physics Letters, 2017, 111,. Effective n-type doping of monolayer MoS<inf>2</inf> by AlO<inf>x</inf>., 2017, ,. Electrons, phonons, and unconventional applications of 2D materials., 2017, ,. Studies of two-dimensional h-BN and MoS2 for potential diffusion barrier application in copper interconnect technology. Npj 2D Materials and Applications, 2017, 1,. Spatially Resolved Thermometry of Resistive Memory Devices. Scientific Reports, 2017, 7, 15360.	2.8 1.5 3.9	0 34 38 20 0 57

#	Article	IF	CITATIONS
127	Replacing copper interconnects with graphene at a 7-nm node. , 2017, , .		22
128	Low Variability in Synthetic Monolayer MoS ₂ Devices. ACS Nano, 2017, 11, 8456-8463.	7.3	147
129	Atomically thin diffusion barriers for ultra-scaled Cu interconnects implemented by 2D materials. , 2017, , .		7
130	2D molybdenum disulfide (MoS <inf>2</inf>) transistors driving RRAMs with 1T1R configuration. , 2017, , .		9
131	Thermal boundary conductance of the MOS <inf>2</inf> -SiO <inf>2</inf> interface. , 2017, , .		2
132	Active metasurfaces based on phase-change memory material digital metamolecules. , 2017, , .		0
133	Improved Hysteresis and Reliability of MoS ₂ Transistors With High-Quality CVD Growth and Al ₂ O ₃ Encapsulation. IEEE Electron Device Letters, 2017, 38, 1763-1766.	2.2	81
134	Dual-Layer Dielectric Stack for Thermally Isolated Low-Energy Phase-Change Memory. IEEE Transactions on Electron Devices, 2017, 64, 4496-4502.	1.6	29
135	Sub-15 nm nanowires enabled by cryo pulsed self-aligned nanotrench ablation on carbon nanotubes. , 2017, , .		0
136	Electronic, thermal, and unconventional applications of 2D materials. , 2017, , .		0
137	Metasurfaces Based on Nano-Patterned Phase-Change Memory Materials. , 2017, , .		0
138	Atomically-thin HfSe <inf>2</inf> transistors with native metal oxides. , 2016, , .		2
139	Gate tunneling current and quantum capacitance in metal-oxide-semiconductor devices with graphene gate electrodes. Applied Physics Letters, 2016, 109, .	1.5	12
140	Thermal conductivity of chirality-sorted carbon nanotube networks. Applied Physics Letters, 2016, 108,	1.5	38
141	Approaching ballistic transport in monolayer MoS <inf>2</inf> transistors with self-aligned 10 nm top gates. , 2016, , .		60
142	S2DS: Physics-based compact model for circuit simulation of two-dimensional semiconductor devices including non-idealities. Journal of Applied Physics, 2016, 120, .	1.1	78
143	Reduction of hysteresis in MoS <inf>2</inf> transistors using pulsed voltage measurements. , 2016, , .		4
144	Electrical and Thermoelectric Transport by Variable Range Hopping in Thin Black Phosphorus Devices. Nano Letters, 2016, 16, 3969-3975.	4.5	65

4

#	Article	IF	CITATIONS
145	Improved Contacts to MoS ₂ Transistors by Ultra-High Vacuum Metal Deposition. Nano Letters, 2016, 16, 3824-3830.	4.5	394
146	Optimization of TCR and heat transport in group-IV multiple-quantum-well microbolometers. Proceedings of SPIE, 2016, , .	0.8	0
147	Visualization of Defect-Induced Excitonic Properties of the Edges and Grain Boundaries in Synthesized Monolayer Molybdenum Disulfide. Journal of Physical Chemistry C, 2016, 120, 24080-24087.	1.5	20
148	GDOT: A graphene-based nanofunction for dot-product computation. , 2016, , .		8
149	Thermal limitations of two-dimensional semi-metallic WTe <inf>2</inf> devices. , 2016, , .		0
150	Role of Remote Interfacial Phonon (RIP) Scattering in Heat Transport Across Graphene/SiO ₂ Interfaces. Nano Letters, 2016, 16, 6014-6020.	4.5	35
151	SANTA: Self-aligned nanotrench ablation via Joule heating for probing sub-20 nm devices. Nano Research, 2016, 9, 2950-2959.	5.8	3
152	Analytical model of graphene-enabled ultra-low power phase change memory. , 2016, , .		2
153	High Current Density and Low Thermal Conductivity of Atomically Thin Semimetallic WTe ₂ . ACS Nano, 2016, 10, 7507-7514.	7.3	100
154	WTe ₂ as a two-dimensional (2D) metallic contact for 2D semiconductors. , 2016, , .		1
155	Direct observation of power dissipation in monolayer MoS2 devices. , 2016, , .		3
156	Role of Pressure in the Growth of Hexagonal Boron Nitride Thin Films from Ammonia-Borane. Chemistry of Materials, 2016, 28, 4169-4179.	3.2	85
157	Kinetic Study of Hydrogen Evolution Reaction over Strained MoS ₂ with Sulfur Vacancies Using Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2016, 138, 5123-5129.	6.6	244
158	Device and energy properties of two-dimensional (2D) atomically thin materials. , 2015, , .		0
159	Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer. Journal of Applied Physics, 2015, 118, .	1.1	41
160	Physics-based compact model for circuit simulations of 2-dimensional semiconductor devices. , 2015, , .		11
161	High mobility in monolayer MoS <inf>2</inf> devices grown by chemical vapor deposition. , 2015, , .		1

162 Thermal modeling of metal oxides for highly scaled nanoscale RRAM. , 2015, , .

#	Article	IF	CITATIONS
163	Energy-Efficient Abundant-Data Computing: The N3XT 1,000x. Computer, 2015, 48, 24-33.	1.2	156
164	Annealing free, clean graphene transfer using alternative polymer scaffolds. Nanotechnology, 2015, 26, 055302.	1.3	114
165	Bright visible light emission from graphene. Nature Nanotechnology, 2015, 10, 676-681.	15.6	284
166	Graphene-Based Platform for Infrared Near-Field Nanospectroscopy of Water and Biological Materials in an Aqueous Environment. ACS Nano, 2015, 9, 7968-7975.	7.3	75
167	Solution-Mediated Selective Nanosoldering of Carbon Nanotube Junctions for Improved Device Performance. ACS Nano, 2015, 9, 4806-4813.	7.3	16
168	Scaling of graphene integrated circuits. Nanoscale, 2015, 7, 8076-8083.	2.8	25
169	Engineering Ultra-Low Work Function of Graphene. Nano Letters, 2015, 15, 6475-6480.	4.5	75
170	Compact modeling and design optimization of carbon nanotube field-effect transistors for the sub-10-nm technology nodes. , 2015, , .		4
171	A Compact Virtual-Source Model for Carbon Nanotube FETs in the Sub-10-nm Regime—Part I: Intrinsic Elements. IEEE Transactions on Electron Devices, 2015, 62, 3061-3069.	1.6	187
172	Li Intercalation in MoS ₂ : In Situ Observation of Its Dynamics and Tuning Optical and Electrical Properties. Nano Letters, 2015, 15, 6777-6784.	4.5	312
173	A Compact Virtual-Source Model for Carbon Nanotube FETs in the Sub-10-nm Regime—Part II: Extrinsic Elements, Performance Assessment, and Design Optimization. IEEE Transactions on Electron Devices, 2015, 62, 3070-3078.	1.6	123
174	Energy-Efficient Phase-Change Memory with Graphene as a Thermal Barrier. Nano Letters, 2015, 15, 6809-6814.	4.5	121
175	Nanoscale phase change memory with graphene ribbon electrodes. Applied Physics Letters, 2015, 107, .	1.5	35
176	Improving contact resistance in MoS <inf>2</inf> field effect transistors. , 2014, , .		11
177	Phase change materials and phase change memory. MRS Bulletin, 2014, 39, 703-710.	1.7	404
178	Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices. Review of Scientific Instruments, 2014, 85, 094904.	0.6	6
179	Response to "Comment on †Theoretical analysis of high-field transport in graphene on a substrate'―[J. Appl. Phys. 116 , 236101 (2014)]. Journal of Applied Physics, 2014, 116, .	1.1	0
180	Direct observation of resistive heating at graphene wrinkles and grain boundaries. Applied Physics Letters, 2014, 105, .	1.5	47

#	Article	IF	CITATIONS
181	Heterogeneous nanometer-scale Joule and Peltier effects in sub-25 nm thin phase change memory devices. Journal of Applied Physics, 2014, 116, .	1.1	11
182	Ultrafast terahertz-induced response of GeSbTe phase-change materials. Applied Physics Letters, 2014, 104, .	1.5	38
183	High-field and thermal transport in 2D atomic layer devices. Proceedings of SPIE, 2014, , .	0.8	3
184	Energy efficiency and conversion in 1D and 2D electronics. , 2014, , .		0
185	Nanoscale thermal transport. II. 2003–2012. Applied Physics Reviews, 2014, 1, 011305.	5.5	1,277
186	Hysteresis-Free Nanosecond Pulsed Electrical Characterization of Top-Gated Graphene Transistors. IEEE Transactions on Electron Devices, 2014, 61, 1583-1589.	1.6	31
187	Multi-valley high-field transport in 2-dimensional MoS <inf>2</inf> transistors. , 2014, , .		3
188	Substrate-supported thermometry platform for nanomaterials like graphene, nanotubes, and nanowires. Applied Physics Letters, 2014, 105, .	1.5	11
189	Theoretical analysis of high-field transport in graphene on a substrate. Journal of Applied Physics, 2014, 116, .	1.1	36
190	Variability of graphene mobility and contacts: Surface effects, doping and strain. , 2014, , .		0
191	Carbon Nanotube Circuit Integration up to Sub-20 nm Channel Lengths. ACS Nano, 2014, 8, 3434-3443.	7.3	70
192	Self-Aligned Cu Etch Mask for Individually Addressable Metallic and Semiconducting Carbon Nanotubes. ACS Nano, 2014, 8, 6500-6508.	7.3	2
193	Monolithic IIIâ€V Nanowire Solar Cells on Graphene via Direct van der Waals Epitaxy. Advanced Materials, 2014, 26, 3755-3760.	11.1	86
194	MONTE CARLO TRANSPORT AND HEAT GENERATION IN SEMICONDUCTORS. Annual Review of Heat Transfer, 2014, 17, 385-423.	0.3	6
195	Role of Joule Heating on Current Saturation and Transient Behavior of Graphene Transistors. IEEE Electron Device Letters, 2013, 34, 166-168.	2.2	70
196	Reliability, failure, and fundamental limits of graphene and carbon nanotube interconnects. , 2013, , .		4
197	Realistic simulation of graphene transistors including non-ideal electrostatics. , 2013, , .		0
198	3D-nHD: A HydroDynamic model for trap-limited conduction in a 3D network. , 2013, , .		2

#	Article	IF	CITATIONS
199	Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study. ACS Nano, 2013, 7, 75-86.	7.3	132
200	In _{<i>x</i>} Ga _{1–<i>x</i>} As Nanowire Growth on Graphene: van der Waals Epitaxy Induced Phase Segregation. Nano Letters, 2013, 13, 1153-1161.	4.5	101
201	Ballistic to diffusive crossover of heat flow in graphene ribbons. Nature Communications, 2013, 4, 1734.	5.8	263
202	The Role of External Defects in Chemical Sensing of Graphene Field-Effect Transistors. Nano Letters, 2013, 13, 1962-1968.	4.5	125
203	Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. Nature Nanotechnology, 2013, 8, 347-355.	15.6	167
204	Metal-semiconductor-metal photodetectors based on graphene/ <i>p</i> -type silicon Schottky junctions. Applied Physics Letters, 2013, 102, .	1.5	191
205	Compact Model for Carbon Nanotube Field-Effect Transistors Including Nonidealities and Calibrated With Experimental Data Down to 9-nm Gate Length. IEEE Transactions on Electron Devices, 2013, 60, 1834-1843.	1.6	64
206	High-Field Electrical and Thermal Transport in Suspended Graphene. Nano Letters, 2013, 13, 4581-4586.	4.5	145
207	Gigahertz Integrated Graphene Ring Oscillators. ACS Nano, 2013, 7, 5588-5594.	7.3	67
208	Electrochemistry at the Edge of a Single Graphene Layer in a Nanopore. ACS Nano, 2013, 7, 834-843.	7.3	105
209	Resistive Random Access Memory Enabled by Carbon Nanotube Crossbar Electrodes. ACS Nano, 2013, 7, 5360-5366.	7.3	77
210	Effect of grain boundaries on thermal transport in graphene. Applied Physics Letters, 2013, 102, .	1.5	127
211	High-Field Transport and Thermal Reliability of Sorted Carbon Nanotube Network Devices. ACS Nano, 2013, 7, 482-490.	7.3	35
212	Self-Aligned Nanotube–Nanowire Phase Change Memory. Nano Letters, 2013, 13, 464-469.	4.5	118
213	Nanosoldering Carbon Nanotube Junctions by Local Chemical Vapor Deposition for Improved Device Performance. Nano Letters, 2013, 13, 5844-5850.	4.5	36
214	Substrate dependent high-field transport of graphene transistors. , 2013, , .		0
215	High field breakdown characteristics of carbon nanotube thin film transistors. Nanotechnology, 2013, 24, 405204.	1.3	13
216	Conductive preferential paths of hot carriers in amorphous phase-change materials. Applied Physics Letters, 2013, 103, .	1.5	25

#	Article	IF	CITATIONS
217	Signatures of dynamic screening in interfacial thermal transport of graphene. Physical Review B, 2013, 87, .	1.1	20
218	Direct observation of nanometer-scale Joule and Peltier effects in phase change memory devices. Applied Physics Letters, 2013, 102, .	1.5	30
219	Novel 3D random-network model for threshold switching of phase-change memories. , 2013, , .		6
220	Helical Carbon Nanotubes Enhance the Early Immune Response and Inhibit Macrophage-Mediated Phagocytosis of Pseudomonas aeruginosa. PLoS ONE, 2013, 8, e80283.	1.1	14
221	High Field Breakdown of Carbon Nanotube Network Transistors. , 2013, , .		0
222	Impact of thermal boundary conductances on power dissipation and electrical breakdown of carbon nanotube network transistors. Journal of Applied Physics, 2012, 112, 124506.	1.1	13
223	Impact of Contact Resistances on Electrical and Thermal Transport in Carbon Nanotube Network Transistors. , 2012, , .		0
224	Chemical sensors based on randomly stacked graphene flakes. Applied Physics Letters, 2012, 100, .	1.5	49
225	A Stacked Graphene-Al2O3 Nanopore Architecture for DNA Detection. Biophysical Journal, 2012, 102, 730a.	0.2	0
226	New Technique of DNA Sensing: Nanoribbon Transverse Electrodes. Biophysical Journal, 2012, 102, 428a.	0.2	0
227	Graphene nanopores for nucleic acid analysis. , 2012, , .		1
228	Role of screening, heating, and dielectrics on high-field transport in graphene. , 2012, , .		0
229	Nanowire phase change memory with carbon nanotube electrodes. , 2012, , .		2
230	Atomic-scale study of scattering and electronic properties of CVD graphene grain boundaries. , 2012, , .		1
231	Scanning tunneling microscopy characterization of graphene-coated few-layered water on mica. , 2012, , .		0
232	Energy-efficiency and thermal management in nanoscale devices. , 2012, , .		2
233	Quantitative Thermal Imaging of Single-Walled Carbon Nanotube Devices by Scanning Joule Expansion Microscopy. ACS Nano, 2012, 6, 10267-10275.	7.3	23
234	Transport in Nanoribbon Interconnects Obtained from Graphene Grown by Chemical Vapor Deposition. Nano Letters, 2012, 12, 4424-4430.	4.5	99

#	Article	IF	CITATIONS
235	Nanoscale power and heat management in electronics. , 2012, , .		0
236	Comparison of graphene nanoribbons with Cu and Al interconnects. , 2012, , .		1
237	Pulsed nanosecond characterization of graphene transistors. , 2012, , .		5
238	Cascading Wafer-Scale Integrated Graphene Complementary Inverters under Ambient Conditions. Nano Letters, 2012, 12, 3948-3953.	4.5	53
239	Thermal properties of graphene: Fundamentals and applications. MRS Bulletin, 2012, 37, 1273-1281.	1.7	1,309
240	Improved graphene growth and fluorination on Cu with clean transfer to surfaces. , 2012, , .		2
241	Scanning Tunneling Microscopy Study and Nanomanipulation of Graphene-Coated Water on Mica. Nano Letters, 2012, 12, 2665-2672.	4.5	102
242	Nanosoldering carbon nanotube junctions with metal via local chemical vapor deposition for improved device performance. , 2012, , .		0
243	Stacked Graphene-Al ₂ O ₃ Nanopore Sensors for Sensitive Detection of DNA and DNA–Protein Complexes. ACS Nano, 2012, 6, 441-450.	7.3	189
244	Effects of tip-nanotube interactions on atomic force microscopy imaging of carbon nanotubes. Nano Research, 2012, 5, 235-247.	5.8	15
245	Effect of carbon nanotube network morphology on thin film transistor performance. Nano Research, 2012, 5, 307-319.	5.8	59
246	Polycrystalline Graphene Ribbons as Chemiresistors. Advanced Materials, 2012, 24, 53-57.	11.1	177
247	Graphene Sensors: Polycrystalline Graphene Ribbons as Chemiresistors (Adv. Mater. 1/2012). Advanced Materials, 2012, 24, 52-52.	11.1	2
248	Transport properties of CVD-grown graphene nanoribbon field-effect transistors. , 2011, , .		1
249	Imaging dissipation and hot spots in carbon nanotube network transistors. Applied Physics Letters, 2011, 98, .	1.5	66
250	Thermally Limited Current Carrying Ability of Graphene Nanoribbons. Physical Review Letters, 2011, 106, 256801.	2.9	190
251	Reliably Counting Atomic Planes of Few-Layer Graphene (<i>n</i> > 4). ACS Nano, 2011, 5, 269-274.	7.3	127
252	Scaling of High-Field Transport and Localized Heating in Graphene Transistors. ACS Nano, 2011, 5, 7936-7944.	7.3	79

#	Article	IF	CITATIONS
253	Effect of substrate modes on thermal transport in supported graphene. Physical Review B, 2011, 84, .	1.1	228
254	Stretchable, Transparent Graphene Interconnects for Arrays of Microscale Inorganic Light Emitting Diodes on Rubber Substrates. Nano Letters, 2011, 11, 3881-3886.	4.5	307
255	Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition. Nano Letters, 2011, 11, 4547-4554.	4.5	426
256	Nanoscale Joule heating, Peltier cooling and current crowding at graphene–metal contacts. Nature Nanotechnology, 2011, 6, 287-290.	15.6	275
257	A Web Service and Interface for Remote Electronic Device Characterization. IEEE Transactions on Education, 2011, 54, 646-651.	2.0	16
258	Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes. Science, 2011, 332, 568-570.	6.0	474
259	Pressure tuning of the thermal conductance of weak interfaces. Physical Review B, 2011, 84, .	1.1	89
260	Effect of oxide thickness scaling on self-heating in graphene transistors. , 2011, , .		0
261	Reduction of phonon lifetimes and thermal conductivity of a carbon nanotube on amorphous silica. Physical Review B, 2011, 84, .	1.1	67
262	Electronic, optical and thermal properties of the hexagonal and rocksalt-like Ge2Sb2Te5 chalcogenide from first-principle calculations. Journal of Applied Physics, 2011, 110, .	1.1	49
263	Electrical power dissipation in semiconducting carbon nanotubes on single crystal quartz and amorphous SiO2. Applied Physics Letters, 2011, 99, .	1.5	19
264	Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>SiO</mml:mtext></mml:mrow><mml:mn> Physical Review B, 2010, 81, .</mml:mn></mml:msub></mml:mrow></mml:math>	2 <td>ın≯{/mml:ms</td>	ın≯{/mml:ms
265	Energy dissipation and transport in nanoscale devices. Nano Research, 2010, 3, 147-169.	5.8	952
266	Infrared Imaging of Heat Dissipation in Graphene Transistors. ECS Transactions, 2010, 28, 51-62.	0.3	0
267	Thermal dissipation and variability in electrical breakdown of carbon nanotube devices. Physical Review B, 2010, 82, .	1.1	89
268	Frequency and polarization dependence of thermal coupling between carbon nanotubes and SiO2. Journal of Applied Physics, 2010, 108, 103502.	1.1	35
269	Imaging, Simulation, and Electrostatic Control of Power Dissipation in Graphene Devices. Nano Letters, 2010, 10, 4787-4793.	4.5	163
270	Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization. Nanotechnology, 2010, 21, 085702.	1.3	100

#	Article	IF	CITATIONS
271	Heat Conduction across Monolayer and Few-Layer Graphenes. Nano Letters, 2010, 10, 4363-4368.	4.5	354
272	Reduced Thermal Conductivity in Nanoengineered Rough Ge and GaAs Nanowires. Nano Letters, 2010, 10, 1120-1124.	4.5	120
273	Covalent Functionalization and Electron-Transfer Properties of Vertically Aligned Carbon Nanofibers: The Importance of Edge-Plane Sites. Chemistry of Materials, 2010, 22, 2357-2366.	3.2	43
274	Mobility and saturation velocity in graphene on SiO2. Applied Physics Letters, 2010, 97, .	1.5	411
275	Topography and refractometry of nanostructures using spatial light interference microscopy. Optics Letters, 2010, 35, 208.	1.7	55
276	Mobility and velocity-field relationship in graphene. , 2010, , .		2
277	Integrating carbon-based nanoelectronics with chalcogenide phase change memory. , 2010, , .		1
278	Ultra-low power phase change memory with carbon nanotube interconnects. , 2010, , .		3
279	Modeling of the voltage snap-back in amorphous-GST memory devices. , 2010, , .		3
280	Inducing chalcogenide phase change with ultra-narrow carbon nanotube heaters. Applied Physics Letters, 2009, 95, .	1.5	51
281	Multiband Mobility in Semiconducting Carbon Nanotubes. IEEE Electron Device Letters, 2009, 30, 1078-1080.	2.2	60
282	Molecular Dynamics Simulation of Interfacial Thermal Resistance Between a (10,10) Carbon Nanotube and SiO2. Materials Research Society Symposia Proceedings, 2009, 1172, 44.	0.1	0
283	Compact Thermal Model for Vertical Nanowire Phase-Change Memory Cells. IEEE Transactions on Electron Devices, 2009, , .	1.6	16
284	Impact of Phonon-Surface Roughness Scattering on Thermal Conductivity of Thin Si Nanowires. Physical Review Letters, 2009, 102, 125503.	2.9	322
285	Electrical and Thermal Coupling to a Single-Wall Carbon Nanotube Device Using an Electrothermal Nanoprobe. Nano Letters, 2009, 9, 1356-1361.	4.5	28
286	Avalanche, joule breakdown and hysteresis in carbon nanotube transistors. , 2009, , .		8
287	Tailored I <inf>ON</inf> /I <inf>OFF</inf> ratio of nanotube network transistors by pulsed breakdown. , 2009, , .		0
288	Chalcogenide phase change induced with single-wall carbon nanotube heaters. , 2009, , .		0

#	Article	IF	CITATIONS
289	Reduction of hysteresis in mobility measurements of carbon nanotube transistors by pulsed I–V characterization. , 2009, , .		1
290	Prediction of reduced thermal conductivity in nano-engineered rough semiconductor nanowires. Journal of Physics: Conference Series, 2009, 193, 012010.	0.3	5
291	Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays. Journal of Heat Transfer, 2008, 130, .	1.2	176
292	Impact Ionization in Semiconducting Single Wall Carbon Nanotubes. , 2008, , .		0
293	Electron-Phonon Interaction and Joule Heating in Nanostructures. , 2008, , .		0
294	A Two-Temperature Model of Narrow-Body Silicon Transistors Under Steady State and Transient Operation. , 2008, , .		0
295	The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes. Nanotechnology, 2008, 19, 295202.	1.3	95
296	Operational Voltage Reduction of Flash Memory Using High-\$kappa\$ Composite Tunnel Barriers. IEEE Electron Device Letters, 2008, 29, 252-254.	2.2	14
297	Avalanche-Induced Current Enhancement in Semiconducting Carbon Nanotubes. Physical Review Letters, 2008, 101, 256804.	2.9	51
298	Role of Electrical and Thermal Contact Resistance in the High-Bias Joule Breakdown of Single-Wall Carbon Nanotube Devices. Device Research Conference, IEEE Annual, 2007, , .	0.0	1
299	Electrically driven light emission from hot single-walled carbon nanotubes at various temperatures and ambient pressures. Applied Physics Letters, 2007, 91, .	1.5	18
300	Feasibility Study of Composite Dielectric Tunnel Barriers for Flash Memory. Device Research Conference, IEEE Annual, 2007, , .	0.0	2
301	Heat Generation and Transport in SOI and GOI Devices. ECS Transactions, 2007, 6, 151-157.	0.3	3
302	Electrical and thermal transport in metallic single-wall carbon nanotubes. , 2007, , .		0
303	Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films. Applied Physics Letters, 2007, 91, .	1.5	112
304	Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nature Nanotechnology, 2007, 2, 33-38.	15.6	167
305	Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. Journal of Applied Physics, 2007, 101, 093710.	1.1	310
306	Thermally and Molecularly Stimulated Relaxation of Hot Phonons in Suspended Carbon Nanotubes. Journal of Physical Chemistry B, 2006, 110, 1502-1505.	1.2	49

#	Article	IF	CITATIONS
307	ELECTRICAL TRANSPORT PROPERTIES AND FIELD EFFECT TRANSISTORS OF CARBON NANOTUBES. Nano, 2006, 01, 1-13.	0.5	142
308	Heat Generation and Transport in Nanometer-Scale Transistors. Proceedings of the IEEE, 2006, 94, 1587-1601.	16.4	512
309	Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature. Nano Letters, 2006, 6, 96-100.	4.5	1,562
310	Non-Equilibrium Phonon Distributions in Sub-100nm Silicon Transistors. Journal of Heat Transfer, 2006, 128, 638-647.	1.2	69
311	Thermal Phenomena in Nanoscale Transistors. Journal of Electronic Packaging, Transactions of the ASME, 2006, 128, 102-108.	1.2	89
312	ADVANCED COOLING TECHNOLOGIES FOR MICROPROCESSORS. International Journal of High Speed Electronics and Systems, 2006, 16, 301-313.	0.3	21
313	ADVANCED COOLING TECHNOLOGIES FOR MICROPROCESSORS. , 2006, , .		1
314	Negative Differential Conductance and Hot Phonons in Suspended Nanotube Molecular Wires. Physical Review Letters, 2005, 95, 155505.	2.9	393
315	Monte Carlo simulation of Joule heating in bulk and strained silicon. Applied Physics Letters, 2005, 86, 082101.	1.5	65
316	Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion. Journal of Applied Physics, 2004, 96, 4998-5005.	1.1	163
317	Detailed heat generation simulations via the Monte Carlo method. , 2003, , .		10
318	Monte Carlo Modeling of Heat Generation in Electronic Nanostructures. , 2002, , .		8
319	Thermal simulation techniques for nanoscale transistors. , 0, , .		9
320	Thermal Properties of Metal-Coated Vertically-Aligned Single Wall Nanotube Films. , 0, , .		5
321	Multiphysics Modeling and Impact of Thermal Boundary Resistance in Phase Change Memory Devices. , 0, , .		15