
Theodore W Kurtz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7389647/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SARS COV-2 anti-nucleocapsid and anti-spike antibodies in an emergency department healthcare worker cohort: September 2020 – April 2021. American Journal of Emergency Medicine, 2022, 54, 81-86.	1.6	3
2	Will Food and Drug Administration Guidance to Reduce the Salt Content of Processed Foods Reduce Salt Intake and Save Lives?. Hypertension, 2022, 79, 809-812.	2.7	4
3	Mechanism-based strategies to prevent salt sensitivity and salt-induced hypertension. Clinical Science, 2022, 136, 599-620.	4.3	9
4	Prevalence of SARS-Cov-2 Antibodies in Emergency Medicine Healthcare Workers. Annals of Emergency Medicine, 2021, 77, 556-557.	0.6	4
5	No evidence of racial disparities in blood pressure salt sensitivity when potassium intake exceeds levels recommended in the US dietary guidelines. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1903-H1918.	3.2	15
6	SARS-CoV-2 antibody magnitude and detectability are driven by disease severity, timing, and assay. Science Advances, 2021, 7, .	10.3	117
7	Seroprevalence of SARS-CoV-2 Among Firefighters/Paramedics in San Francisco, CA. Journal of Occupational and Environmental Medicine, 2021, 63, e807-e812.	1.7	4
8	Strategies Are Needed to Prevent Salt-Induced Hypertension That Do Not Depend on Reducing Salt Intake. American Journal of Hypertension, 2020, 33, 116-118.	2.0	6
9	SARS-CoV-2 seroprevalence and neutralizing activity in donor and patient blood. Nature Communications, 2020, 11, 4698.	12.8	124
10	Small Amounts of Inorganic Nitrate or Beetroot Provide Substantial Protection From Salt-Induced Increases in Blood Pressure. Hypertension, 2019, 73, 1042-1048.	2.7	17
11	Changing views on the common physiologic abnormality that mediates salt sensitivity and initiation of salt-induced hypertension: Japanese research underpinning the vasodysfunction theory of salt sensitivity. Hypertension Research, 2019, 42, 6-18.	2.7	14
12	Development of In-Browser Simulators for Medical Education: Introduction of a Novel Software Toolchain. Journal of Medical Internet Research, 2019, 21, e14160.	4.3	10
13	The pivotal role of renal vasodysfunction in salt sensitivity and the initiation of salt-induced hypertension. Current Opinion in Nephrology and Hypertension, 2018, 27, 83-92.	2.0	30
14	Functional foods for augmenting nitric oxide activity and reducing the risk for salt-induced hypertension and cardiovascular disease in Japan. Journal of Cardiology, 2018, 72, 42-49.	1.9	13
15	Testing Computer Models Predicting Human Responses to a High-Salt Diet. Hypertension, 2018, 72, 1407-1416.	2.7	17
16	Reply. Journal of Hypertension, 2018, 36, 703-704.	0.5	0
17	An Appraisal of Methods Recently Recommended for Testing Salt Sensitivity of Blood Pressure. Journal of the American Heart Association, 2017, 6, .	3.7	44
18	What abnormalities initiate salt-induced increases in blood pressure according to the autoregulation and vasodysfunction theories for salt sensitivity?. Kidney International, 2017, 92, 1015-1016.	5.2	1

Theodore W Kurtz

#	Article	IF	CITATIONS
19	The American Heart Association Scientific Statement on salt sensitivity of blood pressure. Journal of Hypertension, 2017, 35, 2214-2225.	0.5	28
20	Response to Tautological Nature of Guyton's Theory of Blood Pressure Control. American Journal of Hypertension, 2017, 30, e6-e6.	2.0	4
21	Vasodysfunction That Involves Renal Vasodysfunction, Not Abnormally Increased Renal Retention of Sodium, Accounts for the Initiation of Salt-Induced Hypertension. Circulation, 2016, 133, 881-893.	1.6	97
22	An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension. Kidney International, 2016, 90, 965-973.	5.2	32
23	Logical Issues With the Pressure Natriuresis Theory of Chronic Hypertension. American Journal of Hypertension, 2016, 29, 1325-1331.	2.0	18
24	Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2). Journal of Biological Chemistry, 2016, 291, 7754-7766.	3.4	63
25	Genetic Variation in Renal Expression of <i>Folate Receptor 1</i> (<i>Folr1</i>) Gene Predisposes Spontaneously Hypertensive Rats to Metabolic Syndrome. Hypertension, 2016, 67, 335-341.	2.7	14
26	Molecular-Based Mechanisms of Mendelian Forms of Salt-Dependent Hypertension. Hypertension, 2015, 65, 932-941.	2.7	40
27	Effects of mtDNA in SHR-mt ^{F344} versus SHR conplastic strains on reduced OXPHOS enzyme levels, insulin resistance, cardiac hypertrophy, and systolic dysfunction. Physiological Genomics, 2014, 46, 671-678.	2.3	18
28	John Laragh: Scientific Pioneer. American Journal of Hypertension, 2014, 27, 1010-1010.	2.0	0
29	The 24Âh pattern of arterial pressure in mice is determined mainly by heart rate-driven variation in cardiac output. Physiological Reports, 2014, 2, e12223.	1.7	18
30	Differential pharmacology and benefit/risk of azilsartan compared to other sartans. Vascular Health and Risk Management, 2012, 8, 133.	2.3	63
31	Genome-Wide Association Studies Will Unlock the Genetic Basis of Hypertension. Hypertension, 2010, 56, 1021-1025.	2.7	34
32	Design, synthesis, and docking studies of novel telmisartan–glitazone hybrid analogs for the treatment of metabolic syndrome. Medicinal Chemistry Research, 2009, 18, 589-610.	2.4	9
33	Design, synthesis, and docking studies of telmisartan analogs for the treatment of metabolic syndrome. Medicinal Chemistry Research, 2009, 18, 611-628.	2.4	11
34	Next generation multifunctional angiotensin receptor blockers. Hypertension Research, 2009, 32, 826-834.	2.7	74
35	Molecule-specific Effects of Angiotensin II-Receptor Blockers Independent of the Renin-Angiotensin System. American Journal of Hypertension, 2008, 21, 852-859.	2.0	26
36	Beyond the classic angiotensin-receptor-blocker profile. Nature Clinical Practice Cardiovascular Medicine, 2008, 5, S19-S26.	3.3	30

THEODORE W KURTZ

#	Article	IF	CITATIONS
37	New Treatment Strategies for Patients with Hypertension and Insulin Resistance. American Journal of Medicine, 2006, 119, S24-S30.	1.5	67
38	The Renin-Angiotensin System, Capri 2005. High Blood Pressure and Cardiovascular Prevention, 2005, 12, 91-108.	2.2	0
39	Antidiabetic mechanisms of angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists. Journal of Hypertension, 2004, 22, 2253-2261.	0.5	172
40	Identification of a mutation in ADD1/SREBP-1 in the spontaneously hypertensive rat. Mammalian Genome, 2001, 12, 295-298.	2.2	17
41	Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nature Genetics, 2001, 27, 156-158.	21.4	186
42	Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nature Genetics, 1999, 21, 76-83.	21.4	692
43	Effects of Thiazolidinediones on Growth and Differentiation of Human Aorta and Coronary Myocytes. American Journal of Hypertension, 1997, 10, 440-446.	2.0	15
44	Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nature Genetics, 1997, 16, 197-201.	21.4	138
45	Frequency of a Deletion Polymorphism in the Gene for Angiotensin Converting Enzyme Is Increased in African-Americans With Hypertension. American Journal of Hypertension, 1994, 7, 759-762.	2.0	127
46	Genetic Approaches to Hypertension. Annals of Medicine, 1992, 24, 81-83.	3.8	6
47	An ACE for hypertension. Nature, 1991, 353, 499-499.	27.8	10
48	Salt-Sensitive Essential Hypertension in Men. New England Journal of Medicine, 1987, 317, 1043-1048.	27.0	252