
Maryam Jouyandeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7389174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure–propertiesâ€performance relationships in complex epoxy nanocomposites: A complete picture applying chemorheological and thermoâ€mechanical kinetic analyses. Journal of Applied Polymer Science, 2022, 139, 51446.	2.6	7
2	Green composites in bone tissue engineering. Emergent Materials, 2022, 5, 603-620.	5.7	11
3	Green carbon-based nanocompositeÂbiomaterials through the lens of microscopes. Emergent Materials, 2022, 5, 665-671.	5.7	12
4	Green products from herbal medicine wastes by subcritical water treatment. Journal of Hazardous Materials, 2022, 424, 127294.	12.4	26
5	Crystalline polysaccharides: A review. Carbohydrate Polymers, 2022, 275, 118624.	10.2	41
6	Green metal-organic frameworks (MOFs) for biomedical applications. Microporous and Mesoporous Materials, 2022, 335, 111670.	4.4	65
7	Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification. Chemosphere, 2022, 290, 133363.	8.2	43
8	Highly antifouling polymer-nanoparticle-nanoparticle/polymer hybrid membranes. Science of the Total Environment, 2022, 810, 152228.	8.0	41
9	Cure Kinetics of Samarium-Doped Fe3O4/Epoxy Nanocomposites. Journal of Composites Science, 2022, 6, 29.	3.0	7
10	Magnetic nanoparticles-based coatings. , 2022, , 317-343.		0
11	Green Polymer Nanocomposites for Skin Tissue Engineering. ACS Applied Bio Materials, 2022, 5, 2107-2121.	4.6	26
12	Comparative review of piezoelectric biomaterials approach for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1555-1594.	3.5	9
13	Metal-organic frameworks (MOF) based heat transfer: A comprehensive review. Chemical Engineering Journal, 2022, 449, 137700.	12.7	39
14	Synthesis of Cost-Effective Hierarchical MFI-Type Mesoporous Zeolite: Introducing Diatomite as Silica Source. Silicon, 2021, 13, 3461-3472.	3.3	12
15	Polyhedral oligomeric silsesquioxane/epoxy coatings: a review. Surface Innovations, 2021, 9, 3-16.	2.3	35
16	Imidazole-functionalized nitrogen-rich Mg-Al-CO3 layered double hydroxide for developing highly crosslinkable epoxy with high thermal and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125826.	4.7	22
17	Correlating the Photophysical Properties with the Cure Index of Epoxy Nanocomposite Coatings. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 923-933.	3.7	7
18	Quantum dots for photocatalysis: synthesis and environmental applications. Green Chemistry, 2021, 23, 4931-4954.	9.0	72

#	Article	IF	CITATIONS
19	Green Organic Films and Coatings: Developments and Future Challenges. Mini-Reviews in Organic Chemistry, 2021, 18, .	1.3	1
20	Natural Polymers Decorated MOF-MXene Nanocarriers for Co-delivery of Doxorubicin/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5106-5121.	4.6	78
21	Amineâ€functionalized <scp>metal–organic</scp> frameworks/epoxy nanocomposites: <scp>Structureâ€properties</scp> relationships. Journal of Applied Polymer Science, 2021, 138, 51005.	2.6	12
22	lsothermal Vulcanization and Non-Isothermal Degradation Kinetics of XNBR/Epoxy/XNBR-g-Halloysite Nanotubes (HNT) Nanocomposites. Materials, 2021, 14, 2872.	2.9	10
23	Multifunctional 3D Hierarchical Bioactive Green Carbon-Based Nanocomposites. ACS Sustainable Chemistry and Engineering, 2021, 9, 8706-8720.	6.7	43
24	Turning Toxic Nanomaterials into a Safe and Bioactive Nanocarrier for Co-delivery of DOX/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5336-5351.	4.6	57
25	Chitosan-based blends for biomedical applications. International Journal of Biological Macromolecules, 2021, 183, 1818-1850.	7.5	97
26	Coffee Wastes as Sustainable Flame Retardants for Polymer Materials. Coatings, 2021, 11, 1021.	2.6	19
27	Epoxy/Ionic Liquid-Modified Mica Nanocomposites: Network Formation–Network Degradation Correlation. Nanomaterials, 2021, 11, 1990.	4.1	9
28	In-Out Surface Modification of Halloysite Nanotubes (HNTs) for Excellent Cure of Epoxy: Chemistry and Kinetics Modeling. Nanomaterials, 2021, 11, 3078.	4.1	15
29	Epoxy/Zn-Al-CO3 LDH nanocomposites: Curability assessment. Progress in Organic Coatings, 2020, 138, 105355.	3.9	19
30	Nonisothermal cure kinetics of epoxy/MnxFe3-xO4 nanocomposites. Progress in Organic Coatings, 2020, 140, 105505.	3.9	34
31	Exploring curing potential of epoxy nanocomposites containing nitrate anion intercalated Mg–Al–LDH with Cure Index. Progress in Organic Coatings, 2020, 139, 105255.	3.9	10
32	Thermal-Resistant Polyurethane/Nanoclay Powder Coatings: Degradation Kinetics Study. Coatings, 2020, 10, 871.	2.6	13
33	Effect of Nickel Doping on the Cure Kinetics of Epoxy/Fe3O4 Nanocomposites. Journal of Composites Science, 2020, 4, 102.	3.0	3
34	Thermal Analysis of Crosslinking Reactions in Epoxy Nanocomposites Containing Polyvinyl Chloride (PVC)-Functionalized Nickel-Doped Nano-Fe3O4. Journal of Composites Science, 2020, 4, 107.	3.0	2
35	Bulk-Surface Modification of Nanoparticles for Developing Highly-Crosslinked Polymer Nanocomposites. Polymers, 2020, 12, 1820.	4.5	9
36	A Comparative Study on Cure Kinetics of Layered Double Hydroxide (LDH)/Epoxy Nanocomposites. Journal of Composites Science, 2020, 4, 111.	3.0	13

#	Article	IF	CITATIONS
37	Kinetics of Cross-Linking Reaction of Epoxy Resin with Hydroxyapatite-Functionalized Layered Double Hydroxides. Polymers, 2020, 12, 1157.	4.5	19
38	Silaneâ€functionalized Al 2 O 3 â€modified polyurethane powder coatings: Nonisothermal degradation kinetics and mechanistic insights. Journal of Applied Polymer Science, 2020, 137, 49412.	2.6	12
39	Nonisothermal Cure Kinetics of Epoxy/Polyvinylpyrrolidone Functionalized Superparamagnetic Nano-Fe3O4 Composites: Effect of Zn and Mn Doping. Journal of Composites Science, 2020, 4, 55.	3.0	13
40	Conductive polymers in water treatment: A review. Journal of Molecular Liquids, 2020, 312, 113447.	4.9	104
41	Superâ€crosslinked ionic liquidâ€intercalated montmorillonite/epoxy nanocomposites: Cure kinetics, viscoelastic behavior and thermal degradation mechanism. Polymer Engineering and Science, 2020, 60, 1940-1957.	3.1	37
42	Curing Kinetics and Thermal Stability of Epoxy Composites Containing Newly Obtained Nano-Scale Aluminum Hypophosphite (AlPO2). Polymers, 2020, 12, 644.	4.5	47
43	Metal-Organic Framework (MOF)/Epoxy Coatings: A Review. Materials, 2020, 13, 2881.	2.9	99
44	Synthesis, characterization, and high potential of 3D metal–organic framework (MOF) nanoparticles for curing with epoxy. Journal of Alloys and Compounds, 2020, 829, 154547.	5.5	71
45	Highly curable self-healing vitrimer-like cellulose-modified halloysite nanotube/epoxy nanocomposite coatings. Chemical Engineering Journal, 2020, 396, 125196.	12.7	103
46	Effect of Surface Treatment of Halloysite Nanotubes (HNTs) on the Kinetics of Epoxy Resin Cure with Amines. Polymers, 2020, 12, 930.	4.5	32
47	Polyurethane/Silane-Functionalized ZrO2 Nanocomposite Powder Coatings: Thermal Degradation Kinetics. Coatings, 2020, 10, 413.	2.6	15
48	Curing epoxy with electrochemically synthesized Mn Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105199.	3.9	13
49	Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized Mn Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105247.	3.9	19
50	Thin films of epoxy adhesives containing recycled polymers and graphene oxide nanoflakes for metal/polymer composite interface. Progress in Organic Coatings, 2019, 136, 105201.	3.9	42
51	Epoxy/layered double hydroxide (LDH) nanocomposites: Synthesis, characterization, and Excellent cure feature of nitrate anion intercalated Zn-Al LDH. Progress in Organic Coatings, 2019, 136, 105218.	3.9	67
52	Surface chemistry of halloysite nanotubes controls the curability of low filled epoxy nanocomposites. Progress in Organic Coatings, 2019, 135, 555-564.	3.9	65
53	Curing epoxy with electrochemically synthesized Ni Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105198.	3.9	27
54	Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized Zn Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105227.	3.9	25

#	Article	IF	CITATIONS
55	Cure Index for labeling curing potential of epoxy/LDH nanocomposites: A case study on nitrate anion intercalated Ni-Al-LDH. Progress in Organic Coatings, 2019, 136, 105228.	3.9	43
56	Unconditionally blue: Curing epoxy with polyethylene glycol (PEG) surface-functionalized Zn Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 137, 105285.	3.9	11
57	Curing epoxy with Mg-Al LDH nanoplatelets intercalated with carbonate ion. Progress in Organic Coatings, 2019, 136, 105278.	3.9	31
58	Nonisothermal cure kinetics of epoxy/Zn Fe3-O4 nanocomposites. Progress in Organic Coatings, 2019, 136, 105290.	3.9	23
59	PANI-based nanostructures. , 2019, , 121-130.		4
60	Curing epoxy with electrochemically synthesized Zn Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105246.	3.9	22
61	Development of Mg-Zn-Al-CO3 ternary LDH and its curability in epoxy/amine system. Progress in Organic Coatings, 2019, 136, 105264.	3.9	34
62	Curing epoxy with polyvinyl chloride (PVC) surface-functionalized CoxFe3-xO4 nanoparticles. Progress in Organic Coatings, 2019, 137, 105364.	3.9	9
63	Curing epoxy with ethylenediaminetetraacetic acid (EDTA) surface-functionalized Co Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105248.	3.9	14
64	The Taste of Waste: The Edge of Eggshell Over Calcium Carbonate in Acrylonitrile Butadiene Rubber. Journal of Polymers and the Environment, 2019, 27, 2478-2489.	5.0	31
65	Curing epoxy with electrochemically synthesized Gd Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105245.	3.9	29
66	Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized NixFe3-xO4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105259.	3.9	14
67	Curing epoxy with polyethylene glycol (PEG) surface-functionalized NixFe3-xO4magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105250.	3.9	22
68	Cure kinetics of epoxy/graphene oxide (GO) nanocomposites: Effect of starch functionalization of GO nanosheets. Progress in Organic Coatings, 2019, 136, 105217.	3.9	41
69	Cure Index demonstrates curing of epoxy composites containing silica nanoparticles of variable morphology and porosity. Progress in Organic Coatings, 2019, 135, 176-184.	3.9	60
70	Thermo-sensitive polymers in medicine: A review. European Polymer Journal, 2019, 117, 402-423.	5.4	206
71	Multi-nationality epoxy adhesives on trial for future nanocomposite developments. Progress in Organic Coatings, 2019, 133, 376-386.	3.9	52
72	Properties of nano-Fe3O4 incorporated epoxy coatings from Cure Index perspective. Progress in Organic Coatings, 2019, 133, 220-228.	3.9	92

#	Article	IF	CITATIONS
73	Electroactive bio-epoxy incorporated chitosan-oligoaniline as an advanced hydrogel coating for neural interfaces. Progress in Organic Coatings, 2019, 131, 389-396.	3.9	70
74	Protocol for nonisothermal cure analysis of thermoset composites. Progress in Organic Coatings, 2019, 131, 333-339.	3.9	87
75	Bushy-surface hybrid nanoparticles for developing epoxy superadhesives. Applied Surface Science, 2019, 479, 1148-1160.	6.1	112
76	Curing epoxy with electrochemically synthesized Co Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 137, 105252.	3.9	12
77	Curing epoxy with polyethylene glycol (PEG) surface-functionalized Gd Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 137, 105283.	3.9	20
78	â€~Cure Index' for thermoset composites. Progress in Organic Coatings, 2019, 127, 429-434.	3.9	107
79	Thermal decomposition kinetics of dynamically vulcanized polyamide 6–acrylonitrile butadiene rubber–halloysite nanotube nanocomposites. Journal of Applied Polymer Science, 2019, 136, 47483.	2.6	44
80	Curing epoxy resin with anhydride in the presence of halloysite nanotubes: the contradictory effects of filler concentration. Progress in Organic Coatings, 2019, 126, 129-135.	3.9	70
81	Surface engineering of nanoparticles with macromolecules for epoxy curing: Development of super-reactive nitrogen-rich nanosilica through surface chemistry manipulation. Applied Surface Science, 2018, 447, 152-164.	6.1	112
82	Hyperbranched poly(ethyleneimine) physically attached to silica nanoparticles to facilitate curing of epoxy nanocomposite coatings. Progress in Organic Coatings, 2018, 120, 100-109.	3.9	83
83	Acid-aided epoxy-amine curing reaction as reflected in epoxy/Fe3O4 nanocomposites: Chemistry, mechanism, and fracture behavior. Progress in Organic Coatings, 2018, 125, 384-392.	3.9	77
84	Curing behavior of epoxy/Fe3O4 nanocomposites: A comparison between the effects of bare Fe3O4, Fe3O4/SiO2/chitosan and Fe3O4/SiO2/chitosan/imide/phenylalanine-modified nanofillers. Progress in Organic Coatings, 2018, 123, 10-19.	3.9	89
85	Short-lasting fire in partially and completely cured epoxy coatings containing expandable graphite and halloysite nanotube additives. Progress in Organic Coatings, 2018, 123, 160-167.	3.9	97
86	Tangential Flow Analysis of Giesekus Model in Concentric Annulus with Both Cylinders Rotation. Journal of Applied Fluid Mechanics, 2017, 10, 1721-1728.	0.2	2
87	High-performance epoxy-based adhesives reinforced with alumina and silica for carbon fiber composite/steel bonded joints. Journal of Reinforced Plastics and Composites, 2016, 35, 1685-1695.	3.1	74
88	Improved Flame Retardancy in Polyurethanes Using Layered Double Hydroxides. ACS Symposium Series, 0, , 137-160.	0.5	0