Maryam Jouyandeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7389174/publications.pdf

Version: 2024-02-01

88 papers

3,523 citations

34 h-index 56 g-index

90 all docs

90 docs citations

90 times ranked 1844 citing authors

#	Article	IF	CITATIONS
1	Thermo-sensitive polymers in medicine: A review. European Polymer Journal, 2019, 117, 402-423.	5.4	206
2	Surface engineering of nanoparticles with macromolecules for epoxy curing: Development of super-reactive nitrogen-rich nanosilica through surface chemistry manipulation. Applied Surface Science, 2018, 447, 152-164.	6.1	112
3	Bushy-surface hybrid nanoparticles for developing epoxy superadhesives. Applied Surface Science, 2019, 479, 1148-1160.	6.1	112
4	â€~Cure Index' for thermoset composites. Progress in Organic Coatings, 2019, 127, 429-434.	3.9	107
5	Conductive polymers in water treatment: A review. Journal of Molecular Liquids, 2020, 312, 113447.	4.9	104
6	Highly curable self-healing vitrimer-like cellulose-modified halloysite nanotube/epoxy nanocomposite coatings. Chemical Engineering Journal, 2020, 396, 125196.	12.7	103
7	Metal-Organic Framework (MOF)/Epoxy Coatings: A Review. Materials, 2020, 13, 2881.	2.9	99
8	Short-lasting fire in partially and completely cured epoxy coatings containing expandable graphite and halloysite nanotube additives. Progress in Organic Coatings, 2018, 123, 160-167.	3.9	97
9	Chitosan-based blends for biomedical applications. International Journal of Biological Macromolecules, 2021, 183, 1818-1850.	7.5	97
10	Properties of nano-Fe3O4 incorporated epoxy coatings from Cure Index perspective. Progress in Organic Coatings, 2019, 133, 220-228.	3.9	92
11	Curing behavior of epoxy/Fe3O4 nanocomposites: A comparison between the effects of bare Fe3O4, Fe3O4/SiO2/chitosan and Fe3O4/SiO2/chitosan/imide/phenylalanine-modified nanofillers. Progress in Organic Coatings, 2018, 123, 10-19.	3.9	89
12	Protocol for nonisothermal cure analysis of thermoset composites. Progress in Organic Coatings, 2019, 131, 333-339.	3.9	87
13	Hyperbranched poly(ethyleneimine) physically attached to silica nanoparticles to facilitate curing of epoxy nanocomposite coatings. Progress in Organic Coatings, 2018, 120, 100-109.	3.9	83
14	Natural Polymers Decorated MOF-MXene Nanocarriers for Co-delivery of Doxorubicin/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5106-5121.	4.6	78
15	Acid-aided epoxy-amine curing reaction as reflected in epoxy/Fe3O4 nanocomposites: Chemistry, mechanism, and fracture behavior. Progress in Organic Coatings, 2018, 125, 384-392.	3.9	77
16	High-performance epoxy-based adhesives reinforced with alumina and silica for carbon fiber composite/steel bonded joints. Journal of Reinforced Plastics and Composites, 2016, 35, 1685-1695.	3.1	74
17	Quantum dots for photocatalysis: synthesis and environmental applications. Green Chemistry, 2021, 23, 4931-4954.	9.0	72
18	Synthesis, characterization, and high potential of 3D metal–organic framework (MOF) nanoparticles for curing with epoxy. Journal of Alloys and Compounds, 2020, 829, 154547.	5 . 5	71

#	Article	IF	CITATIONS
19	Electroactive bio-epoxy incorporated chitosan-oligoaniline as an advanced hydrogel coating for neural interfaces. Progress in Organic Coatings, 2019, 131, 389-396.	3.9	70
20	Curing epoxy resin with anhydride in the presence of halloysite nanotubes: the contradictory effects of filler concentration. Progress in Organic Coatings, 2019, 126, 129-135.	3.9	70
21	Epoxy/layered double hydroxide (LDH) nanocomposites: Synthesis, characterization, and Excellent cure feature of nitrate anion intercalated Zn-Al LDH. Progress in Organic Coatings, 2019, 136, 105218.	3.9	67
22	Surface chemistry of halloysite nanotubes controls the curability of low filled epoxy nanocomposites. Progress in Organic Coatings, 2019, 135, 555-564.	3.9	65
23	Green metal-organic frameworks (MOFs) for biomedical applications. Microporous and Mesoporous Materials, 2022, 335, 111670.	4.4	65
24	Cure Index demonstrates curing of epoxy composites containing silica nanoparticles of variable morphology and porosity. Progress in Organic Coatings, 2019, 135, 176-184.	3.9	60
25	Turning Toxic Nanomaterials into a Safe and Bioactive Nanocarrier for Co-delivery of DOX/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5336-5351.	4.6	57
26	Multi-nationality epoxy adhesives on trial for future nanocomposite developments. Progress in Organic Coatings, 2019, 133, 376-386.	3.9	52
27	Curing Kinetics and Thermal Stability of Epoxy Composites Containing Newly Obtained Nano-Scale Aluminum Hypophosphite (AlPO2). Polymers, 2020, 12, 644.	4.5	47
28	Thermal decomposition kinetics of dynamically vulcanized polyamide 6–acrylonitrile butadiene rubber–halloysite nanotube nanocomposites. Journal of Applied Polymer Science, 2019, 136, 47483.	2.6	44
29	Cure Index for labeling curing potential of epoxy/LDH nanocomposites: A case study on nitrate anion intercalated Ni-Al-LDH. Progress in Organic Coatings, 2019, 136, 105228.	3.9	43
30	Multifunctional 3D Hierarchical Bioactive Green Carbon-Based Nanocomposites. ACS Sustainable Chemistry and Engineering, 2021, 9, 8706-8720.	6.7	43
31	Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification. Chemosphere, 2022, 290, 133363.	8.2	43
32	Thin films of epoxy adhesives containing recycled polymers and graphene oxide nanoflakes for metal/polymer composite interface. Progress in Organic Coatings, 2019, 136, 105201.	3.9	42
33	Cure kinetics of epoxy/graphene oxide (GO) nanocomposites: Effect of starch functionalization of GO nanosheets. Progress in Organic Coatings, 2019, 136, 105217.	3.9	41
34	Crystalline polysaccharides: A review. Carbohydrate Polymers, 2022, 275, 118624.	10.2	41
35	Highly antifouling polymer-nanoparticle-nanoparticle/polymer hybrid membranes. Science of the Total Environment, 2022, 810, 152228.	8.0	41
36	Metal-organic frameworks (MOF) based heat transfer: A comprehensive review. Chemical Engineering Journal, 2022, 449, 137700.	12.7	39

#	Article	IF	CITATIONS
37	Superâ€crosslinked ionic liquidâ€intercalated montmorillonite/epoxy nanocomposites: Cure kinetics, viscoelastic behavior and thermal degradation mechanism. Polymer Engineering and Science, 2020, 60, 1940-1957.	3.1	37
38	Polyhedral oligomeric silsesquioxane/epoxy coatings: a review. Surface Innovations, 2021, 9, 3-16.	2.3	35
39	Development of Mg-Zn-Al-CO3 ternary LDH and its curability in epoxy/amine system. Progress in Organic Coatings, 2019, 136, 105264.	3.9	34
40	Nonisothermal cure kinetics of epoxy/MnxFe3-xO4 nanocomposites. Progress in Organic Coatings, 2020, 140, 105505.	3.9	34
41	Effect of Surface Treatment of Halloysite Nanotubes (HNTs) on the Kinetics of Epoxy Resin Cure with Amines. Polymers, 2020, 12, 930.	4.5	32
42	Curing epoxy with Mg-Al LDH nanoplatelets intercalated with carbonate ion. Progress in Organic Coatings, 2019, 136, 105278.	3.9	31
43	The Taste of Waste: The Edge of Eggshell Over Calcium Carbonate in Acrylonitrile Butadiene Rubber. Journal of Polymers and the Environment, 2019, 27, 2478-2489.	5.0	31
44	Curing epoxy with electrochemically synthesized Gd Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105245.	3.9	29
45	Curing epoxy with electrochemically synthesized Ni Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105198.	3.9	27
46	Green products from herbal medicine wastes by subcritical water treatment. Journal of Hazardous Materials, 2022, 424, 127294.	12.4	26
47	Green Polymer Nanocomposites for Skin Tissue Engineering. ACS Applied Bio Materials, 2022, 5, 2107-2121.	4.6	26
48	Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized Zn Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105227.	3.9	25
49	Nonisothermal cure kinetics of epoxy/Zn Fe3-O4 nanocomposites. Progress in Organic Coatings, 2019, 136, 105290.	3.9	23
50	Curing epoxy with electrochemically synthesized Zn Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105246.	3.9	22
51	Curing epoxy with polyethylene glycol (PEG) surface-functionalized NixFe3-xO4magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105250.	3.9	22
52	Imidazole-functionalized nitrogen-rich Mg-Al-CO3 layered double hydroxide for developing highly crosslinkable epoxy with high thermal and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125826.	4.7	22
53	Curing epoxy with polyethylene glycol (PEG) surface-functionalized Gd Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 137, 105283.	3.9	20
54	Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized Mn Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105247.	3.9	19

#	Article	IF	Citations
55	Epoxy/Zn-Al-CO3 LDH nanocomposites: Curability assessment. Progress in Organic Coatings, 2020, 138, 105355.	3.9	19
56	Kinetics of Cross-Linking Reaction of Epoxy Resin with Hydroxyapatite-Functionalized Layered Double Hydroxides. Polymers, 2020, 12, 1157.	4. 5	19
57	Coffee Wastes as Sustainable Flame Retardants for Polymer Materials. Coatings, 2021, 11, 1021.	2.6	19
58	Polyurethane/Silane-Functionalized ZrO2 Nanocomposite Powder Coatings: Thermal Degradation Kinetics. Coatings, 2020, 10, 413.	2.6	15
59	In-Out Surface Modification of Halloysite Nanotubes (HNTs) for Excellent Cure of Epoxy: Chemistry and Kinetics Modeling. Nanomaterials, 2021, 11, 3078.	4.1	15
60	Curing epoxy with ethylenediaminetetraacetic acid (EDTA) surface-functionalized Co Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105248.	3.9	14
61	Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized NixFe3-xO4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105259.	3.9	14
62	Curing epoxy with electrochemically synthesized Mn Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105199.	3.9	13
63	Thermal-Resistant Polyurethane/Nanoclay Powder Coatings: Degradation Kinetics Study. Coatings, 2020, 10, 871.	2.6	13
64	A Comparative Study on Cure Kinetics of Layered Double Hydroxide (LDH)/Epoxy Nanocomposites. Journal of Composites Science, 2020, 4, 111.	3.0	13
65	Nonisothermal Cure Kinetics of Epoxy/Polyvinylpyrrolidone Functionalized Superparamagnetic Nano-Fe3O4 Composites: Effect of Zn and Mn Doping. Journal of Composites Science, 2020, 4, 55.	3.0	13
66	Curing epoxy with electrochemically synthesized Co Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 137, 105252.	3.9	12
67	Synthesis of Cost-Effective Hierarchical MFI-Type Mesoporous Zeolite: Introducing Diatomite as Silica Source. Silicon, 2021, 13, 3461-3472.	3.3	12
68	Silaneâ€functionalized Al 2 O 3 â€modified polyurethane powder coatings: Nonisothermal degradation kinetics and mechanistic insights. Journal of Applied Polymer Science, 2020, 137, 49412.	2.6	12
69	Amineâ€functionalized <scp>metal–organic</scp> frameworks/epoxy nanocomposites: <scp>Structureâ€properties</scp> relationships. Journal of Applied Polymer Science, 2021, 138, 51005.	2.6	12
70	Green carbon-based nanocompositeÂbiomaterials through the lens of microscopes. Emergent Materials, 2022, 5, 665-671.	5.7	12
71	Unconditionally blue: Curing epoxy with polyethylene glycol (PEG) surface-functionalized Zn Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 137, 105285.	3.9	11
72	Green composites in bone tissue engineering. Emergent Materials, 2022, 5, 603-620.	5.7	11

#	Article	IF	CITATIONS
73	Exploring curing potential of epoxy nanocomposites containing nitrate anion intercalated Mg–Al–LDH with Cure Index. Progress in Organic Coatings, 2020, 139, 105255.	3.9	10
74	Isothermal Vulcanization and Non-Isothermal Degradation Kinetics of XNBR/Epoxy/XNBR-g-Halloysite Nanotubes (HNT) Nanocomposites. Materials, 2021, 14, 2872.	2.9	10
75	Curing epoxy with polyvinyl chloride (PVC) surface-functionalized CoxFe3-xO4 nanoparticles. Progress in Organic Coatings, 2019, 137, 105364.	3.9	9
76	Bulk-Surface Modification of Nanoparticles for Developing Highly-Crosslinked Polymer Nanocomposites. Polymers, 2020, 12, 1820.	4.5	9
77	Epoxy/Ionic Liquid-Modified Mica Nanocomposites: Network Formation–Network Degradation Correlation. Nanomaterials, 2021, 11, 1990.	4.1	9
78	Comparative review of piezoelectric biomaterials approach for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1555-1594.	3.5	9
79	Correlating the Photophysical Properties with the Cure Index of Epoxy Nanocomposite Coatings. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 923-933.	3.7	7
80	Structure–propertiesâ€performance relationships in complex epoxy nanocomposites: A complete picture applying chemorheological and thermoâ€mechanical kinetic analyses. Journal of Applied Polymer Science, 2022, 139, 51446.	2.6	7
81	Cure Kinetics of Samarium-Doped Fe3O4/Epoxy Nanocomposites. Journal of Composites Science, 2022, 6, 29.	3.0	7
82	PANI-based nanostructures. , 2019, , 121-130.		4
83	Effect of Nickel Doping on the Cure Kinetics of Epoxy/Fe3O4 Nanocomposites. Journal of Composites Science, 2020, 4, 102.	3.0	3
84	Thermal Analysis of Crosslinking Reactions in Epoxy Nanocomposites Containing Polyvinyl Chloride (PVC)-Functionalized Nickel-Doped Nano-Fe3O4. Journal of Composites Science, 2020, 4, 107.	3.0	2
85	Tangential Flow Analysis of Giesekus Model in Concentric Annulus with Both Cylinders Rotation. Journal of Applied Fluid Mechanics, 2017, 10, 1721-1728.	0.2	2
86	Green Organic Films and Coatings: Developments and Future Challenges. Mini-Reviews in Organic Chemistry, 2021, 18, .	1.3	1
87	Magnetic nanoparticles-based coatings. , 2022, , 317-343.		0
88	Improved Flame Retardancy in Polyurethanes Using Layered Double Hydroxides. ACS Symposium Series, 0, , 137-160.	0.5	0