Mark A Burgman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7389100/publications.pdf

Version: 2024-02-01

189 papers 13,316 citations

25034 57 h-index 30922 102 g-index

191 all docs

191 docs citations

191 times ranked

14050 citing authors

#	Article	IF	Citations
1	An introduction to decision science for conservation. Conservation Biology, 2022, 36, .	4.7	45
2	Challenges in estimation, uncertainty quantification and elicitation for pandemic modelling. Epidemics, 2022, 38, 100547.	3.0	20
3	Implementation of a structured decision-making framework to evaluate and advance understanding of airborne microplastics. Environmental Science and Policy, 2022, 135, 169-181.	4.9	3
4	How many bird and mammal extinctions has recent conservation action prevented?. Conservation Letters, 2021, 14, e12762.	5.7	113
5	Traits explain invasion of alien plants into tropical rainforests. Ecology and Evolution, 2021, 11, 3808-3819.	1.9	5
6	Pre-screening workers to overcome bias amplification in online labour markets. PLoS ONE, 2021, 16, e0249051.	2.5	0
7	Increasing transparency through open science badges. Conservation Biology, 2021, 35, 764-765.	4.7	3
8	Biodiversity conservation as a promising frontier for behavioural science. Nature Human Behaviour, 2021, 5, 550-556.	12.0	54
9	Alternative futures for global biological invasions. Sustainability Science, 2021, 16, 1637-1650.	4.9	25
10	Strengthening conservation science as a crisis discipline by addressing challenges of precaution, privilege, and individualism. Conservation Biology, 2021, 35, 1738-1746.	4.7	6
11	Making more effective use of human behavioural science in conservation interventions. Biological Conservation, 2021, 261, 109256.	4.1	40
12	A method for assessing the impacts of an international agreement on regional progress towards Sustainable Development Goals. Science of the Total Environment, 2021, 785, 147336.	8.0	10
13	Ecosystem indices to support global biodiversity conservation. Conservation Letters, 2020, 13, e12680.	5.7	25
14	Improving expert forecasts in reliability: Application and evidence for structured elicitation protocols. Quality and Reliability Engineering International, 2020, 36, 623-641.	2.3	13
15	Using survival theory models to quantify extinctions. Biological Conservation, 2020, 241, 108345.	4.1	2
16	Bringing sustainability to life: A framework to guide biodiversity indicator development for business performance management. Business Strategy and the Environment, 2020, 29, 3303-3313.	14.3	39
17	Ensuring tests of conservation interventions build on existing literature. Conservation Biology, 2020, 34, 781-783.	4.7	14
18	Improving Analytic Reasoning via Crowdsourcing and Structured Analytic Techniques. Journal of Cognitive Engineering and Decision Making, 2020, 14, 195-217.	2.3	7

#	Article	IF	Citations
19	Weighting and aggregating expert ecological judgments. Ecological Applications, 2020, 30, e02075.	3.8	27
20	Expertise in research integration and implementation for tackling complex problems: when is it needed, where can it be found and how can it be strengthened? Palgrave Communications, 2020, 6, .	4.7	81
21	Assessing the impacts of uncertainty in climateâ€change vulnerability assessments. Diversity and Distributions, 2019, 25, 1234-1245.	4.1	7
22	Untapped potential of collective intelligence in conservation and environmental decision making. Conservation Biology, 2019, 33, 1247-1255.	4.7	13
23	The contrasting roles of science and technology in environmental challenges. Critical Reviews in Environmental Science and Technology, 2019, 49, 1079-1106.	12.8	45
24	ODNI as an analytic ombudsman: is Intelligence Community Directive 203 up to the task?. Intelligence and National Security, 2019, 34, 205-224.	0.6	9
25	Bayesian updating to estimate extinction from sequential observation data. Biological Conservation, 2019, 229, 26-29.	4.1	3
26	The Value of Performance Weights and Discussion in Aggregated Expert Judgments. Risk Analysis, 2018, 38, 1781-1794.	2.7	38
27	Facilitating the transition to sustainable green chemistry. Current Opinion in Green and Sustainable Chemistry, 2018, 13, 130-136.	5.9	10
28	How do you find the green sheep? A critical review of the use of remotely sensed imagery to detect and count animals. Methods in Ecology and Evolution, 2018, 9, 881-892.	5.2	72
29	Classical meets modern in the IDEA protocol for structured expert judgement. Journal of Risk Research, 2018, 21, 417-433.	2.6	39
30	A practical guide to structured expert elicitation using the IDEA protocol. Methods in Ecology and Evolution, 2018, 9, 169-180.	5.2	244
31	Traits influence detection of exotic plant species in tropical forests. PLoS ONE, 2018, 13, e0202254.	2.5	5
32	Does Size Matter to Models? Exploring the Effect of Herd Size on Outputs of a Herd-Level Disease Spread Simulator. Frontiers in Veterinary Science, 2018, 5, 78.	2.2	7
33	Eliciting improved quantitative judgements using the IDEA protocol: A case study in natural resource management. PLoS ONE, 2018, 13, e0198468.	2.5	83
34	Assessing the vulnerability of freshwater crayfish to climate change. Diversity and Distributions, 2018, 24, 1830-1843.	4.1	27
35	Better Together: Reliable Application of the Post-9/11 and Post-Iraq US Intelligence Tradecraft Standards Requires Collective Analysis. Frontiers in Psychology, 2018, 9, 2634.	2.1	4
36	I nvestigate D iscuss E stimate A ggregate Âfor structured expert judgement. International Journal of Forecasting, 2017, 33, 267-279.	6.5	74

#	Article	IF	CITATIONS
37	Inferring extinctions I: A structured method using information on threats. Biological Conservation, 2017, 214, 320-327.	4.1	26
38	Inferring extinctions II: A practical, iterative model based on records and surveys. Biological Conservation, 2017, 214, 328-335.	4.1	29
39	Predicting farm-level animal populations using environmental and socioeconomic variables. Preventive Veterinary Medicine, 2017, 145, 121-132.	1.9	8
40	Inferring extinctions III: A cost-benefit framework for listing extinct species. Biological Conservation, 2017, 214, 336-342.	4.1	40
41	Prioritizing plant eradication targets by re-framing the project prioritization protocol (PPP) for use in biosecurity applications. Biological Invasions, 2017, 19, 859-873.	2.4	10
42	Species distribution models: A comparison of statistical approaches for livestock and disease epidemics. PLoS ONE, 2017, 12, e0183626.	2.5	25
43	Metaresearch for Evaluating Reproducibility in Ecology and Evolution. BioScience, 2017, 67, biw159.	4.9	41
44	<i>Conservation Biology</i> celebrates success. Conservation Biology, 2016, 30, 929-930.	4.7	2
45	Promoting transparency in conservation science. Conservation Biology, 2016, 30, 1149-1150.	4.7	9
46	Use of expert knowledge to elicit population trends for the koala (<i>Phascolarctos cinereus</i>). Diversity and Distributions, 2016, 22, 249-262.	4.1	85
47	Identifying hotspots of alien plant naturalisation in Australia: approaches and predictions. Biological Invasions, 2016, 18, 631-645.	2.4	20
48	Expert Elicitation of Population-Level Effects of Disturbance. Advances in Experimental Medicine and Biology, 2016, 875, 295-302.	1.6	3
49	Decreasing geographic bias in <i>Conservation Biology </i> . Conservation Biology, 2015, 29, 1255-1256.	4.7	18
50	The IUCN Red List of Ecosystems: Motivations, Challenges, and Applications. Conservation Letters, 2015, 8, 214-226.	5.7	141
51	An interim framework for assessing the population consequences of disturbance. Methods in Ecology and Evolution, 2015, 6, 1150-1158.	5.2	114
52	The changing patterns of plant naturalization in Australia. Diversity and Distributions, 2015, 21, 1038-1050.	4.1	27
53	Policy advice: Use experts wisely. Nature, 2015, 526, 317-318.	27.8	147
54	Governance for Effective Policyâ€Relevant Scientific Research: The Shared Governance Model. Asia and the Pacific Policy Studies, 2015, 2, 441-451.	1.5	6

#	Article	IF	CITATIONS
55	Collective wisdom: Methods of confidence interval aggregation. Journal of Business Research, 2015, 68, 1759-1767.	10.2	17
56	Plant extirpation at the site scale: implications for eradication programmes. Diversity and Distributions, 2015, 21, 151-162.	4.1	32
57	Clarifying values, risk perceptions, and attitudes to resolve or avoid social conflicts in invasive species management. Conservation Biology, 2015, 29, 19-30.	4.7	271
58	Voting Systems for Environmental Decisions. Conservation Biology, 2014, 28, 322-332.	4.7	15
59	A novel method for estimating the number of species within a region. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133009.	2.6	6
60	Strategic foresight: how planning for the unpredictable can improve environmental decision-making. Trends in Ecology and Evolution, 2014, 29, 531-541.	8.7	118
61	Inferring extinctions from sighting records of variable reliability. Journal of Applied Ecology, 2014, 51, 251-258.	4.0	38
62	Getting the best out of experts: a review. Proceedings of the Royal Society of Victoria, 2014, 126, 43.	0.4	0
63	Shaping the Future of Conservation Biology. Conservation Biology, 2013, 27, 643-643.	4.7	1
64	Taxonomic uncertainty and decision making for biosecurity: spatial models for myrtle/guava rust. Australasian Plant Pathology, 2013, 42, 43-51.	1.0	40
65	A Novel Spore Collection Device for Sampling Exposure Pathways: A Case Study of <i>Puccinia psidii</i> Plant Disease, 2013, 97, 828-834.	1.4	7
66	Inferring extinction risks from sighting records. Journal of Theoretical Biology, 2013, 338, 16-22.	1.7	25
67	Modelâ€based search strategies for plant diseases: a case study using citrus canker (<i><scp>X</scp>anthomonas citri</i>). Diversity and Distributions, 2013, 19, 590-602.	4.1	15
68	Improving decisions for invasive species management: reformulation and extensions of the <scp>P</scp> anetta– <scp>L</scp> awes eradication graph. Diversity and Distributions, 2013, 19, 603-607.	4.1	16
69	Using internet intelligence to manage biosecurity risks: a case study for aquatic animal health. Diversity and Distributions, 2013, 19, 640-650.	4.1	13
70	Hydroperiod is the main driver of the spatial pattern of dominance in mangrove communities. Global Ecology and Biogeography, 2013, 22, 806-817.	5.8	79
71	Practical solutions for making models indispensable in conservation decisionâ€making. Diversity and Distributions, 2013, 19, 490-502.	4.1	186
72	Risks, decisions and biological conservation. Diversity and Distributions, 2013, 19, 485-489.	4.1	17

#	Article	IF	Citations
73	Treatment of uncertainty in conservation under climate change. Conservation Letters, 2013, 6, 73-85.	5.7	78
74	Capturing social impacts for decisionâ€making: a <scp>M</scp> ulticriteria <scp>D</scp> ecision <scp>A</scp> nalysis perspective. Diversity and Distributions, 2013, 19, 608-616.	4.1	38
75	Scientific Foundations for an IUCN Red List of Ecosystems. PLoS ONE, 2013, 8, e62111.	2.5	383
76	Policy: Twenty tips for interpreting scientific claims. Nature, 2013, 503, 335-337.	27.8	94
77	Structured elicitation of expert judgments for threatened species assessment: a case study on a continental scale using email. Methods in Ecology and Evolution, 2012, 3, 906-920.	5.2	131
78	Decision Making in a Human Population Living Sustainably. Conservation Biology, 2012, 26, 760-768.	4.7	32
79	Evaluating the accuracy and calibration of expert predictions under uncertainty: predicting the outcomes of ecological research. Diversity and Distributions, 2012, 18, 782-794.	4.1	58
80	Surveillance for threatened and invasive species when uncertainty is severe. Diversity and Distributions, 2012, 18, 410-416.	4.1	3
81	Methods for allocation of habitat management, maintenance, restoration and offsetting, when conservation actions have uncertain consequences. Biological Conservation, 2012, 153, 41-50.	4.1	31
82	Implementing comprehensiveness, adequacy and representativeness criteria (CAR) to indicate gaps in an existing reserve system: A case study from Victoria, Australia. Ecological Indicators, 2012, 18, 342-352.	6.3	8
83	TEASIng apart alien species risk assessments: a framework for best practices. Ecology Letters, 2012, 15, 1475-1493.	6.4	241
84	Commentary: IUCN classifications under uncertainty. Environmental Modelling and Software, 2012, 38, 119-121.	4.5	2
85	Facilitated expert judgment of environmental risks: acquiring and analysing imprecise data. International Journal of Risk Assessment and Management, 2012, 16, 199.	0.1	6
86	Uncertain Sightings and the Extinction of the Ivoryâ€Billed Woodpecker. Conservation Biology, 2012, 26, 180-184.	4.7	38
87	Eliciting Expert Knowledge in Conservation Science. Conservation Biology, 2012, 26, 29-38.	4.7	591
88	A test of biotic interactions among two alpine plant species in Australia. Austral Ecology, 2012, 37, 90-96.	1.5	2
89	Improving biodiversity monitoring. Austral Ecology, 2012, 37, 285-294.	1.5	130
90	Modeling Extreme Risks in Ecology. Risk Analysis, 2012, 32, 1956-1966.	2.7	16

#	Article	IF	Citations
91	General rules for managing and surveying networks of pests, diseases, and endangered species. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8323-8328.	7.1	177
92	Expert Status and Performance. PLoS ONE, 2011, 6, e22998.	2.5	227
93	Predicting outbreaks of a climate-driven coral disease in the Great Barrier Reef. Coral Reefs, 2011, 30, 485-495.	2.2	53
94	Redefining expertise and improving ecological judgment. Conservation Letters, 2011, 4, 81-87.	5.7	160
95	Reducing Overconfidence in the Interval Judgments of Experts. Risk Analysis, 2010, 30, 512-523.	2.7	251
96	Resource allocation for efficient environmental management. Ecology Letters, 2010, 13, 1280-1289.	6.4	55
97	The biodiversity bank cannot be a lending bank. Conservation Letters, 2010, 3, 151-158.	5.7	128
98	Development of the primary bacterial microfouling layer on antifouling and fouling release coatings in temperate and tropical environments in Eastern Australia. Biofouling, 2009, 25, 149-162.	2.2	71
99	Modelling human impacts on the Tasmanian wedge-tailed eagle (Aquila audax fleayi). Biological Conservation, 2009, 142, 2438-2448.	4.1	28
100	Introduction to Modeling in Wildlife and Resource Conservation BY NORMAN OWEN-SMITH xii \pm 332 pp., 23.5 \tilde{A} — 15.5 \tilde{A} — 2 cm, ISBN 978 1 4051 4439 1 paperback, GB£ 24.99, Oxford, UK: Blackwell Publishing, 2 Environmental Conservation, 2009, 36, 81.	20 0.3 .	0
101	Subalpine plants show short-term positive growth responses to experimental warming and fire. Australian Journal of Botany, 2009, 57, 465.	0.6	10
102	A checklist for ecological management of landscapes for conservation. Ecology Letters, 2008, 11, 78-91.	6.4	518
103	<i>Linguistic Uncertainty in Qualitative Risk Analysis and How to Minimize It</i> Vork Academy of Sciences, 2008, 1128, 13-17.	3.8	62
104	Evaluating extreme risks in invasion ecology: learning from banking compliance. Diversity and Distributions, 2008, 14, 581-591.	4.1	18
105	Impacts of experimental warming and fire on phenology of subalpine open-heath species. Australian Journal of Botany, 2008, 56, 617.	0.6	27
106	Use of confidence intervals to demonstrate performance against forest management standards. Forest Ecology and Management, 2007, 247, 237-245.	3.2	22
107	Threat syndromes and conservation of the Australian flora. Biological Conservation, 2007, 134, 73-82.	4.1	93
108	Structural habitat selection by the critically endangered trout cod, Maccullochella macquariensis, Cuvier. Biological Conservation, 2007, 138, 30-37.	4.1	26

#	Article	lF	CITATIONS
109	Right Decisions or Happy Decisionâ€makers?. Social Epistemology, 2007, 21, 349-368.	1.2	21
110	Climate change as a threatening process. Austral Ecology, 2006, 31, 549-550.	1.5	23
111	Influences of edaphic factors on the distribution and abundance of a rare palm (Cyrtostachys renda) in a peat swamp forest in eastern Sumatra, Indonesia. Austral Ecology, 2006, 31, 964-974.	1.5	9
112	Impact of Criticism of Null-Hypothesis Significance Testing on Statistical Reporting Practices in Conservation Biology. Conservation Biology, 2006, 20, 1539-1544.	4.7	119
113	Uncertainty Analysis for Regional-Scale Reserve Selection. Conservation Biology, 2006, 20, 1688-1697.	4.7	78
114	Subjective uncertainties in habitat suitability maps. Ecological Modelling, 2006, 195, 172-186.	2.5	52
115	Planning for robust reserve networks using uncertainty analysis. Ecological Modelling, 2006, 199, 115-124.	2.5	95
116	Risk-Based Approaches to Managing Contaminants in Catchments. Human and Ecological Risk Assessment (HERA), 2006, 12, 66-73.	3.4	16
117	The Consistency of Extinction Risk Classification Protocols. Conservation Biology, 2005, 19, 1969-1977.	4.7	52
118	ESTIMATING AND DEALING WITH DETECTABILITY IN OCCUPANCY SURVEYS FOR FOREST OWLS AND ARBOREAL MARSUPIALS. Journal of Wildlife Management, 2005, 69, 905-917.	1.8	155
119	Measuring and Incorporating Vulnerability into Conservation Planning. Environmental Management, 2005, 35, 527-543.	2.7	246
120	An Application of Qualitative Risk Assessment in Park Management. Australasian Journal of Environmental Management, 2005, 12, 6-15.	1.1	5
121	MANAGING LANDSCAPES FOR CONSERVATION UNDER UNCERTAINTY. Ecology, 2005, 86, 2007-2017.	3.2	152
122	A vulnerability analysis of the temperate forests of south central Chile. Biological Conservation, 2005, 122, 9-21.	4.1	86
123	Population status, demography and habitat preferences of the threatened lipstick palm Cyrtostachys renda Blume in Kerumutan Reserve, Sumatra. Acta Oecologica, 2005, 28, 107-118.	1.1	11
124	ROBUST DECISION-MAKING UNDER SEVERE UNCERTAINTY FOR CONSERVATION MANAGEMENT. , 2005, 15, 1471-1477.		318
125	An Application of Qualitative Risk Assessment in Park Management. Australasian Journal of Environmental Management, 2005, 12, 6-15.	1.1	1
126	THE UNIFIED NEUTRAL THEORY OF BIODIVERSITY AND BIOGEOGRAPHY: COMMENT. Ecology, 2004, 85, 3172-3174.	3.2	15

#	Article	IF	CITATIONS
127	Protocols for listing threatened species can forecast extinction. Ecology Letters, 2004, 7, 1101-1108.	6.4	38
128	Incorporating Collateral Data in Conservation Biology. Conservation Biology, 2004, 18, 768-774.	4.7	9
129	Correlations among Extinction Risks Assessed by Different Systems of Threatened Species Categorization. Conservation Biology, 2004, 18, 1624-1635.	4.7	33
130	Combining Population Viability Analysis with Decision Analysis. Biodiversity and Conservation, 2004, 13, 115-139.	2.6	40
131	PRECISION AND BIAS OF METHODS FOR ESTIMATING POINT SURVEY DETECTION PROBABILITIES. , 2004, 14, 703-712.		129
132	Comparing predictions of extinction risk using models and subjective judgement. Acta Oecologica, 2004, 26, 67-74.	1.1	66
133	The Lazarus effect: can the dynamics of extinct species lists tell us anything about the status of biodiversity?. Biological Conservation, 2004, 117, 41-48.	4.1	46
134	Expert frailties in conservation risk assessment and listing decisions. , 2004, , 20-29.		20
135	Model-based analysis of the likelihood of gene introgression from genetically modified crops into wild relatives. Ecological Modelling, 2003, 162, 199-209.	2.5	39
136	Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Animal Conservation, 2003, 6, 19-28.	2.9	376
137	Risks from Competitively Inferior Immigrant Populations: Implications of Mass Effects for Species Conservation. Conservation Biology, 2003, 17, 901-905.	4.7	2
138	The effects of fire and predators on the long-term persistence of an endangered shrub, Grevillea caleyi. Biological Conservation, 2003, 109, 73-83.	4.1	43
139	Neutral DNA markers fail to detect genetic divergence in an ecologically important trait. Biological Conservation, 2003, 110, 267-275.	4.1	80
140	Impacts of plantation development, harvesting schedules and rotation lengths on the rare snail Tasmaphena lamproides in northwest Tasmania: a population viability analysis. Forest Ecology and Management, 2003, 175, 455-466.	3.2	6
141	A TAXONOMY AND TREATMENT OF UNCERTAINTY FOR ECOLOGY AND CONSERVATION BIOLOGY. , 2002, 12, 618-628.		615
142	Limits to the use of threatened species lists. Trends in Ecology and Evolution, 2002, 17, 503-507.	8.7	399
143	Corrigendum to: TURNER REVIEW No. 5: Are listed threatened plant species actually at risk?. Australian Journal of Botany, 2002, 50, 275.	0.6	1
144	Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecological Modelling, 2002, 157, 313-329.	2.5	221

#	Article	IF	Citations
145	Critiques of PVA Ask the Wrong Questions: Throwing the Heuristic Baby Out with the Numerical Bath Water. Conservation Biology, 2002, 16, 262-263.	4.7	107
146	Genetic variation in the vulnerable and endemic Monkey Puzzle tree, detected using RAPDs. Heredity, 2002, 88, 243-249.	2.6	109
147	A TAXONOMY AND TREATMENT OF UNCERTAINTY FOR ECOLOGY AND CONSERVATION BIOLOGY. , 2002, 12, 618.		2
148	SETTING RELIABILITY BOUNDS ON HABITAT SUITABILITY INDICES. , 2001, 11, 70-78.		113
149	Structural uncertainty in stochastic population models: delayed development in the eastern barred bandicoot, Perameles gunnii. Ecological Modelling, 2001, 136, 237-254.	2.5	15
150	Modelling the impact of timber harvesting on a rare carnivorous land snail (Tasmaphena lamproides) in northwest Tasmania, Australia. Ecological Modelling, 2001, 139, 253-264.	2.5	16
151	A Method for Setting the Size of Plant Conservation Target Areas. Conservation Biology, 2001, 15, 603-616.	4.7	66
152	Spatial analysis of eucalypt dieback at Coranderrk, Australia. Applied Vegetation Science, 2001, 4, 257-266.	1.9	10
153	Making Consistent IUCN Classifications under Uncertainty. Conservation Biology, 2000, 14, 1001-1013.	4.7	236
154	Predictive accuracy of population viability analysis in conservation biology. Nature, 2000, 404, 385-387.	27.8	517
155	Population Viability Analysis for Bird Conservation: Prediction, Heuristics, Monitoring and Psychology. Emu, 2000, 100, 347-353.	0.6	40
156	A proposal for fuzzy International Union for the Conservation of Nature (IUCN) categories and criteria. Biological Conservation, 2000, 92, 101-108.	4.1	80
157	The regeneration ecology ofKunzea ericoides(A. Rich.) J. Thompson at Coranderrk Reserve, Healesville. Austral Ecology, 1999, 24, 18-24.	1.5	9
158	Uncertainty in Comparative Risk Analysis for Threatened Australian Plant Species. Risk Analysis, 1999, 19, 585-598.	2.7	30
159	Title is missing!. Risk Analysis, 1999, 19, 585-598.	2.7	13
160	A stochastic model for seagrass (Zostera muelleri) in Port Phillip Bay, Victoria, Australia. Ecological Modelling, 1999, 118, 131-148.	2.5	21
161	Modelling the persistence of an apparently immortal Banksia species after fire and land clearing. Biological Conservation, 1999, 88, 249-259.	4.1	56
162	Probabilistic classification rules for setting conservation priorities. Biological Conservation, 1999, 89, 227-231.	4.1	20

#	Article	IF	Citations
163	The treatment of uncertainty and the structure of the IUCN threatened species categories. Biological Conservation, 1999, 89, 245-249.	4.1	24
164	Uncertainty in population dynamics and its consequences for the management of the orange-bellied parrot Neophema chrysogaster. Biological Conservation, 1998, 84, 269-281.	4.1	71
165	Assessment of Threat and Conservation Priorities under Realistic Levels of Uncertainty and Reliability. Conservation Biology, 1998, 12, 966-974.	4.7	47
166	Characterisation and delineation of the eucalypt old-growth forest estate in Australia: a review. Forest Ecology and Management, 1996, 83, 149-161.	3.2	24
167	Logistic sensitivity and bounds for extinction risks. Ecological Modelling, 1996, 86, 297-303.	2.5	62
168	Niche overlap and competition for habitat between the helmeted honeyeater and the bell miner. Wildlife Research, 1995, 22, 633.	1.4	13
169	A review of the generic computer programs ALEX, RAMAS/space and VORTEX for modelling the viability of wildlife metapopulations. Ecological Modelling, 1995, 82, 161-174.	2.5	130
170	Coping with uncertainty in forest wildlife planning. Forest Ecology and Management, 1995, 74, 23-36.	3.2	49
171	Sensitivity analysis for models of population viability. Biological Conservation, 1995, 73, 93-100.	4.1	199
172	Correlations, dependency bounds and extinction risks. Biological Conservation, 1995, 73, 101-105.	4.1	89
173	Inferring Threat from Scientific Collections. Conservation Biology, 1995, 9, 923-928.	4.7	107
174	Use and abuse of wildlife models for determining habitat requirements of forest fauna. Australian Forestry, 1994, 57, 82-85.	0.9	9
175	Wildlife planning using FORPLAN: a review and examples from Victorian forests. Australian Forestry, 1994, 57, 131-140.	0.9	11
176	The importance of demographic uncertainty: An example from the helmeted honeyeater Lichenostomus melanops cassidix. Biological Conservation, 1994, 67, 135-142.	4.1	62
177	Mortality models for mountain and alpine ash. Forest Ecology and Management, 1994, 67, 319-327.	3.2	20
178	Misconduct in Science: Should Its Definition Include Mischievous or Improper Allegations?. Quarterly Review of Biology, 1994, 69, 233-235.	0.1	0
179	Habitat selection by helmeted honeyeaters. Wildlife Research, 1994, 21, 53.	1.4	35
180	Shrews in suburbia: an application of Goodman's extinction model. Biological Conservation, 1992, 61, 117-123.	4.1	10

#	Article	IF	CITATIONS
181	Social organization of the pygmy chimpanzee (Pan paniscus): Multivariate analysis of intracommunity associations. American Journal of Physical Anthropology, 1990, 83, 193-201.	2.1	37
182	Factors affecting the character stability of classifications. Plant Systematics and Evolution, 1989, 167, 59-68.	0.9	2
183	The Habitat Volumes of Scarce and Ubiquitous Plants: A Test of the Model of Environmental Control. American Naturalist, 1989, 133, 228-239.	2.1	63
184	The use of extinction models for species conservation. Biological Conservation, 1988, 43, 9-25.	4.1	65
185	Cladistics, Phenetics and Biogeography of Populations of Boronia inornata Turcz. (Rutaceae) and the Eucalyptus diptera Andrews (Myrtaceae) Species Complex in Western Australia. Australian Journal of Botany, 1985, 33, 419.	0.6	8
186	The Zoogeography and Phylogenetic Relationships of Three Genera of Australian Scolopendrid Centipedes (Chilopoda: Scolopendridae). Australian Journal of Zoology, 1984, 32, 507.	1.0	4
187	Some Aspects of the Ecology of the Mammal Fauna of the Jabiluka Area. Northern Territory. Wildlife Research, 1984, 11, 207.	1.4	27
188	Cladistic and Phenetic Analyses of Phylogenetic Relationships Among Populations of Eucalyptus caesia. Australian Journal of Botany, 1983, 31, 35.	0.6	26
189	Comparisons of Different Methods of Determining Affinities for Nine Ant Species of the Genus Camponotus Australian Journal of Zoology, 1980, 28, 151.	1.0	7