Pranela Rameshwar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7388843/publications.pdf

Version: 2024-02-01

159 papers 7,425 citations

57758 44 h-index 81 g-index

166 all docs

166
docs citations

166 times ranked 9285 citing authors

#	Article	IF	CITATIONS
1	3D bioprinting as a designer organoid to assess pathological processes in translational medicine. Journal of 3D Printing in Medicine, 2022, 6, 37-46.	2.0	2
2	Clinical Manufacturing of Human Mesenchymal Stromal Cells using a Potency-Driven Paradigm. Current Stem Cell Reports, 2022, 8, 61-71.	1.6	5
3	Oncobiology and treatment of breast cancer in young women. Cancer and Metastasis Reviews, 2022, 41, 749-770.	5.9	11
4	Expression of glucocorticoid and androgen receptors in bone marrow-derived hematopoietic and non-hematopoietic murine endometrial cells. F&S Science, 2022, , .	0.9	0
5	Therapeutic approaches to overcome temozolomide resistance in glioblastoma., 2021,, 507-545.		1
6	Cellular Fitness Phenotypes of Cancer Target Genes from Oncobiology to Cancer Therapeutics. Cells, 2021, 10, 433.	4.1	5
7	A 3D Bioprinted Material That Recapitulates the Perivascular Bone Marrow Structure for Sustained Hematopoietic and Cancer Models. Polymers, 2021, 13, 480.	4.5	14
8	Specific N-cadherin–dependent pathways drive human breast cancer dormancy in bone marrow. Life Science Alliance, 2021, 4, e202000969.	2.8	13
9	Hypomethylating Chemotherapeutic Agents as Therapy for Myelodysplastic Syndromes and Prevention of Acute Myeloid Leukemia. Pharmaceuticals, 2021, 14, 641.	3.8	13
10	NFÄ,B Targeting in Bone Marrow Mesenchymal Stem Cell-Mediated Support of Age-Linked Hematological Malignancies. Stem Cell Reviews and Reports, 2021, 17, 2178-2192.	3.8	5
11	Hematological Humanization of Immune-Deficient Mice. Methods in Molecular Biology, 2021, 2224, 195-202.	0.9	1
12	Mesenchymal Stem Cellâ€"Secreted Extracellular Vesicles Instruct Stepwise Dedifferentiation of Breast Cancer Cells into Dormancy at the Bone Marrow Perivascular Region. Cancer Research, 2021, 81, 1567-1582.	0.9	68
13	Restoration of aged hematopoietic cells by their young counterparts through instructive microvesicles release. Aging, 2021, 13, 23981-24016.	3.1	5
14	Exosomes in the Healthy and Malignant Bone Marrow Microenvironment. Advances in Experimental Medicine and Biology, 2021, 1350, 67-89.	1.6	1
15	Purinergic signaling in bone marrow stem cell mobilization. Purinergic Signalling, 2020, 16, 255-256.	2.2	O
16	Non-Coding RNAs as Mediators of Epigenetic Changes in Malignancies. Cancers, 2020, 12, 3657.	3.7	64
17	Epigenetic dynamics in cancer stem cell dormancy. Cancer and Metastasis Reviews, 2020, 39, 721-738.	5.9	26
18	Hypoxia-mediated changes in bone marrow microenvironment in breast cancer dormancy. Cancer Letters, 2020, 488, 9-17.	7.2	12

#	Article	IF	Citations
19	Gap Junctions and Breast Cancer Dormancy. Trends in Cancer, 2020, 6, 348-357.	7.4	10
20	Neuroimmune/Hematopoietic Axis with Distinct Regulation by the High-Mobility Group Box 1 in Association with Tachykinin Peptides. Journal of Immunology, 2020, 204, 879-891.	0.8	6
21	Isolation and characterization of mesenchymal stem cells in orthopaedics and the emergence of compact bone mesenchymal stem cells as a promising surgical adjunct. World Journal of Stem Cells, 2020, 12, 1341-1353.	2.8	4
22	Epigenetic Dysregulation at the Crossroad of Women's Cancer. Cancers, 2019, 11, 1193.	3.7	11
23	Combination of Chemical and Neurotrophin Stimulation Modulates Neurotransmitter Receptor Expression and Activity in Transdifferentiating Human Adipose Stromal Cells. Stem Cell Reviews and Reports, 2019, 15, 851-863.	3.8	5
24	Exosomes from differentially activated macrophages influence dormancy or resurgence of breast cancer cells within bone marrow stroma. Cell Death and Disease, 2019, 10, 59.	6.3	82
25	Decoding epigenetic cell signaling in neuronal differentiation. Seminars in Cell and Developmental Biology, 2019, 95, 12-24.	5.0	10
26	Cancer stem cell gene profile getting closer to the clinic to enhance precise treatment. EBioMedicine, 2019, 42, 22-23.	6.1	0
27	Cycling Quiescence in Temozolomide Resistant Glioblastoma Cells Is Partly Explained by microRNA-93 and -193-Mediated Decrease of Cyclin D. Frontiers in Pharmacology, 2019, 10, 134.	3.5	19
28	Mesenchymal stem cell therapies in brain disease. Seminars in Cell and Developmental Biology, 2019, 95, 111-119.	5.0	31
29	An Enzyme-free Method for Isolation and Expansion of Human Adipose-derived Mesenchymal Stem Cells. Journal of Visualized Experiments, 2019, , .	0.3	9
30	Bioactive Phospholipids Enhance Migration and Adhesion of Human Leukemic Cells by Inhibiting Heme Oxygenase 1 (HO-1) and Inducible Nitric Oxygenase Synthase (iNOS) in a p38 MAPK-Dependent Manner. Stem Cell Reviews and Reports, 2019, 15, 139-154.	5.6	22
31	Therapeutic Potential of Mesenchymal Stem Cells in Immune-Mediated Diseases. Advances in Experimental Medicine and Biology, 2019, 1201, 93-108.	1.6	11
32	Evaluation of a developmental hierarchy for breast cancer cells to assess risk-based patient selection for targeted treatment. Scientific Reports, 2018, 8, 367.	3.3	23
33	Novel therapeutic strategies for degenerative disc disease: Review of cell biology and intervertebral disc cell therapy. SAGE Open Medicine, 2018, 6, 205031211876167.	1.8	50
34	Immune modulation by a cellular network of mesenchymal stem cells and breast cancer cell subsets: Implication for cancer therapy. Cellular Immunology, 2018, 326, 33-41.	3.0	9
35	Methods of Mesenchymal Stem Cell Homing to the Blood–Brain Barrier. Methods in Molecular Biology, 2018, 1842, 81-91.	0.9	27
36	An Update on the Therapeutic Potential of Stem Cells. Methods in Molecular Biology, 2018, 1842, 3-27.	0.9	3

3

#	Article	IF	Citations
37	Enzyme-Free Isolation of Adipose-Derived Mesenchymal Stem Cells. Methods in Molecular Biology, 2018, 1842, 203-206.	0.9	6
38	3D Bioprinting and Stem Cells. Methods in Molecular Biology, 2018, 1842, 93-103.	0.9	21
39	High CD90 (THY-1) expression positively correlates with cell transformation and worse prognosis in basal-like breast cancer tumors. PLoS ONE, 2018, 13, e0199254.	2.5	13
40	Human Aging and Cancer: Role of miRNA in Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2018, 1056, 137-152.	1.6	55
41	Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy. Biochimie, 2018, 155, 92-103.	2.6	28
42	Steroid-Mediated Decrease in Blood Mesenchymal Stem Cells in Liver Transplant could Impact Long-Term Recovery. Stem Cell Reviews and Reports, 2017, 13, 644-658.	5.6	4
43	A Novel Vaccine Targeting Glypican-3 as a Treatment for Hepatocellular Carcinoma. Molecular Therapy, 2017, 25, 2299-2308.	8.2	21
44	Constitutive Expression of Inducible Cyclic Adenosine Monophosphate Early Repressor (ICER) in Cycling Quiescent Hematopoietic Cells: Implications for Aging Hematopoietic Stem Cells. Stem Cell Reviews and Reports, 2017, 13, 116-126.	5.6	0
45	Mesenchymal stromal/stem cells in drug therapy: New perspective. Cytotherapy, 2017, 19, 19-27.	0.7	38
46	Requirement of Gamma-Carboxyglutamic Acid Modification and Phosphatidylserine Binding for the Activation of Tyro3, Axl, and Mertk Receptors by Growth Arrest-Specific 6. Frontiers in Immunology, 2017, 8, 1521.	4.8	67
47	Withaferin A (WFA) inhibits tumor growth and metastasis by targeting ovarian cancer stem cells. Oncotarget, 2017, 8, 74494-74505.	1.8	35
48	Verrucarin J inhibits ovarian cancer and targets cancer stem cells. Oncotarget, 2017, 8, 92743-92756.	1.8	7
49	Targeting tumor microenvironment in cancer therapy. Cancer Letters, 2016, 380, 203-204.	7.2	39
50	Cancer Stem Cells: Issues with In Vitro Expansion and Model Systems. , 2016, , 127-142.		0
51	Mesenchymal Stem Cell–Derived Exosomes Stimulate Cycling Quiescence and Early Breast Cancer Dormancy in Bone Marrow. Cancer Research, 2016, 76, 5832-5844.	0.9	306
52	Shift toward Mechanical Isolation of Adipose-derived Stromal Vascular Fraction: Review of Upcoming Techniques. Plastic and Reconstructive Surgery - Global Open, 2016, 4, e1017.	0.6	54
53	Featuring the guest editors: Special issue tumor microenvironment. Cancer Letters, 2016, 380, 201-202.	7.2	0
54	Non-coding RNA as mediators in microenvironment–breast cancer cell communication. Cancer Letters, 2016, 380, 289-295.	7.2	37

#	Article	IF	CITATIONS
55	The bone marrow niche in support of breast cancer dormancy. Cancer Letters, 2016, 380, 263-271.	7.2	39
56	The RNAâ€binding protein Musashi 1 stabilizes the oncotachykinin 1 mRNA in breast cancer cells to promote cell growth. FASEB Journal, 2016, 30, 149-159.	0.5	25
57	A Perspective of Immunotherapy for Breast Cancer: Lessons Learned and Forward Directions for All Cancers. Breast Cancer: Basic and Clinical Research, 2015, 9s2, BCBCR.S29425.	1.1	4
58	Enhanced osteogenic potential of mesenchymal stem cells from cortical bone: a comparative analysis. Stem Cell Research and Therapy, 2015, 6, 203.	5.5	44
59	Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1, independent of sonic hedgehog level. Oncotarget, 2015, 6, 1190-1201.	1.8	87
60	Investigating Breast Cancer Cell Behavior Using Tissue Engineering Scaffolds. PLoS ONE, 2015, 10, e0118724.	2.5	46
61	A discussion on adult mesenchymal stem cells for drug delivery: pros and cons. Therapeutic Delivery, 2015, 6, 1335-1346.	2.2	11
62	Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells. Cancer Letters, 2015, 367, 69-75.	7.2	79
63	Cancer Metabolism: Targeting metabolic pathways in cancer therapy. Cancer Letters, 2015, 356, 147-148.	7.2	12
64	Is reduction of tumor burden sufficient for the 21st century?. Cancer Letters, 2015, 356, 149-155.	7.2	1
65	High expression of miR-9 in CD133+glioblastoma cells in chemoresistance to temozolomide. Journal of Cancer Stem Cell Research, 2015, 3, 1.	1.1	30
66	Temozolomide resistance and tumor recurrence: Halting the Hedgehog. Cancer Cell $\&$ Microenvironment, 2015, 2, .	0.8	12
67	Stem cell delivery of therapies for brain disorders. Clinical and Translational Medicine, 2014, 3, 24.	4.0	78
68	Functions and Roles of Proteins: Diabetes as a Paradigm. Progress in Biophysics and Molecular Biology, 2014, 114, 2-7.	2.9	3
69	Temozolomide Induces the Production of Epidermal Growth Factor to Regulate <i>MDR1</i> Expression in Glioblastoma Cells. Molecular Cancer Therapeutics, 2014, 13, 2399-2411.	4.1	72
70	Hierarchy of Breast Cancer Cells: Key to Reverse Dormancy for Therapeutic Intervention. Stem Cells Translational Medicine, 2014, 3, 782-786.	3.3	7
71	Stem cell in alternative treatments for brain tumors: potential for gene delivery. Molecular and Cellular Therapies, 2014, 2, 24.	0.2	6
72	Functions and Roles of a Protein-Associated Factor. Cell Biochemistry and Biophysics, 2014, 68, 577-582.	1.8	0

#	Article	IF	CITATIONS
73	T _{reg} /Th17 polarization by distinct subsets of breast cancer cells is dictated by the interaction with mesenchymal stem cells Journal of Cancer Stem Cell Research, 2014, 1, 1.	1.1	28
74	Delivery of Functional Anti-miR-9 by Mesenchymal Stem Cell–derived Exosomes to Glioblastoma Multiforme Cells Conferred Chemosensitivity. Molecular Therapy - Nucleic Acids, 2013, 2, e126.	5.1	422
75	A Novel Model of Dormancy for Bone Metastatic Breast Cancer Cells. Cancer Research, 2013, 73, 6886-6899.	0.9	109
76	Experimental Evidence for Bone Marrow as a Source of Nonhematopoietic Endometrial Stromal and Epithelial Compartment Cells in a Murine Model1. Biology of Reproduction, 2013, 89, 7.	2.7	58
77	Exogenous CXCL12 activates protein kinase C to phosphorylate connexin 43 for gap junctional intercellular communication among confluent breast cancer cells. Cancer Letters, 2013, 331, 84-91.	7.2	24
78	Multipotent to Pluripotent Properties of Adult Stem Cells. Stem Cells International, 2013, 2013, 1-2.	2.5	8
79	A Review of Stem Cell Translation and Potential Confounds by Cancer Stem Cells. Stem Cells International, 2013, 2013, 1-8.	2.5	18
80	Pollen-induced antigen presentation by mesenchymal stem cells and T cells from allergic rhinitis. Clinical and Translational Immunology, 2013, 2, e7.	3.8	21
81	Implications for breast cancer dormancy in other areas of medicine. Breast Cancer: Targets and Therapy, 2012, 4, 193.	1.8	0
82	The Microenvironmental Effect in the Progression, Metastasis, and Dormancy of Breast Cancer: A Model System within Bone Marrow. International Journal of Breast Cancer, 2012, 2012, 1-7.	1.2	33
83	Delineation of breast cancer cell hierarchy identifies the subset responsible for dormancy. Scientific Reports, 2012, 2, 906.	3.3	82
84	The Tachykinergic System as Avenues for Drug Intervention. Recent Patents on CNS Drug Discovery, 2012, 7, 173-180.	0.9	7
85	An indirect role for the oncomir-519b in the expression of truncated neurokinin-1 in breast cancer cells. Experimental Cell Research, 2012, 318, 2604-2615.	2.6	8
86	Mesenchymal stem cells in drug/gene delivery: implications for cell therapy. Therapeutic Delivery, 2012, 3, 997-1004.	2.2	60
87	Effects by anthrax toxins on hematopoiesis: A key role for cytokines as mediators. Cytokine, 2012, 57, 143-149.	3.2	2
88	Feline bone marrow-derived mesenchymal stromal cells (MSCs) show similar phenotype and functions with regards to neuronal differentiation as human MSCs. Differentiation, 2012, 84, 214-222.	1.9	23
89	Developmental Regulation of i>TAC1 < i > in Peptidergic-Induced Human Mesenchymal Stem Cells: Implication for Spinal Cord Injury in Zebrafish. Stem Cells and Development, 2012, 21, 308-320.	2.1	14
90	Current Thoughts on the Therapeutic Potential of Stem Cell. Methods in Molecular Biology, 2012, 879, 3-26.	0.9	5

#	Article	IF	Citations
91	Tolerance-like mediated suppression by mesenchymal stem cells in patients with dust mite allergy–induced asthma. Journal of Allergy and Clinical Immunology, 2012, 129, 1094-1101.	2.9	57
92	Would cancer stem cells affect the future investment in stem cell therapy. World Journal of Experimental Medicine, 2012, 2, 26.	1.7	2
93	Moving from the Laboratory Bench to Patients' Bedside: Considerations for Effective Therapy with Stem Cells. Clinical and Translational Science, 2011, 4, 380-386.	3.1	33
94	Gap Junction–Mediated Import of MicroRNA from Bone Marrow Stromal Cells Can Elicit Cell Cycle Quiescence in Breast Cancer Cells. Cancer Research, 2011, 71, 1550-1560.	0.9	388
95	microRNAs, Gap Junctional Intercellular Communication and Mesenchymal Stem Cells in Breast Cancer Metastasis. Current Cancer Therapy Reviews, 2011, 7, 176-183.	0.3	22
96	AMD3100-mediated production of interleukin-1 from mesenchymal stem cells is key to chemosensitivity of breast cancer cells. American Journal of Cancer Research, 2011, 1, 701-15.	1.4	21
97	Tachykinins and neurokinin receptors in bone marrow functions: neural-hematopoietic link. Journal of Receptor, Ligand and Channel Research, 2010, 2010, 51.	0.7	4
98	Mesenchymal Stem Cells Protect Breast Cancer Cells through Regulatory T Cells: Role of Mesenchymal Stem Cell-Derived TGF- \hat{l}^2 . Journal of Immunology, 2010, 184, 5885-5894.	0.8	342
99	Stem cells and regenerative medicine: accomplishments to date and future promise. Therapeutic Delivery, 2010, 1, 693-705.	2.2	32
100	Breast cancer cell dormancy in bone marrow: potential therapeutic targets within the marrow microenvironment. Expert Review of Anticancer Therapy, 2010, 10, 129-132.	2.4	18
101	Challenges in the development of future treatments for breast cancer stem cells. Breast Cancer: Targets and Therapy, 2010, 2, 1-11.	1.8	13
102	Distinct Roles of Glycogen Synthase Kinase (GSK)-3α and GSK-3β in Mediating Cardiomyocyte Differentiation in Murine Bone Marrow-derived Mesenchymal Stem Cells. Journal of Biological Chemistry, 2009, 284, 36647-36658.	3.4	61
103	RE-1-silencing transcription factor shows tumor-suppressor functions and negatively regulates the oncogenic TAC1 in breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4408-4413.	7.1	69
104	Brainâ€derived neurotrophic factor facilitates maturation of mesenchymal stem cellâ€derived dopamine progenitors to functional neurons. Journal of Neurochemistry, 2009, 110, 1058-1069.	3.9	108
105	Potential Novel Targets in Breast Cancer. Current Pharmaceutical Biotechnology, 2009, 10, 148-153.	1.6	5
106	Microenvironment at tissue injury, a key focus for efficient stem cell therapy: A discussion of mesenchymal stem cells. World Journal of Stem Cells, 2009, 1, 3.	2.8	9
107	Immunological properties of mesenchymal stem cells and clinical implications. Archivum Immunologiae Et Therapiae Experimentalis, 2008, 56, 1-8.	2.3	141
108	IFN \hat{I}^3 and B7-H1 in the immunology of mesenchymal stem cells. Cell Research, 2008, 18, 805-806.	12.0	16

#	Article	IF	Citations
109	Immunostimulatory Effects of Mesenchymal Stem Cell-Derived Neurons: Implications for Stem Cell Therapy in Allogeneic Transplantations. Clinical and Translational Science, 2008, 1, 27-34.	3.1	13
110	Loss of RE-1 silencing factor in mesenchymal stem cell-derived dopamine progenitors induces functional maturity. Molecular and Cellular Neurosciences, 2008, 39, 285-290.	2.2	40
111	Tac1 regulation by RNA-binding protein and miRNA in bone marrow stroma: Implication for hematopoietic activity. Brain, Behavior, and Immunity, 2008, 22, 442-450.	4.1	13
112	Stromal-derived factor-1α induces a non-canonical pathway to activate the endocrine-linked Tac1 gene in non-tumorigenic breast cells. Journal of Molecular Endocrinology, 2008, 40, 113-123.	2.5	9
113	Down-Regulation of MHC II in Mesenchymal Stem Cells at High IFN- \hat{l}^3 Can Be Partly Explained by Cytoplasmic Retention of CIITA. Journal of Immunology, 2008, 180, 1826-1833.	0.8	41
114	Neurokinin Receptors as Potential Targets in Breast Cancer Treatment. Current Drug Discovery Technologies, 2008, 5, 15-19.	1.2	12
115	Microenvironmental considerations in the application of human mesenchymal stem cells in regenerative therapies. Biologics: Targets and Therapy, 2008, 2, 699.	3.2	38
116	Mesenchymal Stem Cells in Early Entry of Breast Cancer into Bone Marrow. PLoS ONE, 2008, 3, e2563.	2.5	143
117	Breast Cancer Biology: The Multifaceted Roles of Mesenchymal Stem Cells. Journal of Oncology, 2008, 2008, 1-7.	1.3	14
118	A method to generate human mesenchymal stem cell-derived neurons which express and are excited by multiple neurotransmitters. Biological Procedures Online, 2008, 10, 90-101.	2.9	19
119	Enhancing Effect of IL- $\hat{\Pi}$ ± on Neurogenesis from Adult Human Mesenchymal Stem Cells: Implication for Inflammatory Mediators in Regenerative Medicine. Journal of Immunology, 2007, 179, 3342-3350.	0.8	60
120	An Interdisciplinary Approach and Characterization of Neuronal Cells Transdifferentiated from Human Mesenchymal Stem Cells. Stem Cells and Development, 2007, 16, 811-826.	2.1	82
121	G-Coupled Protein Receptors and Breast Cancer Progression: Potential Drug Targets. Mini-Reviews in Medicinal Chemistry, 2007, 7, 245-251.	2.4	15
122	Nuclear Factor-κB Accounts for the Repressor Effects of High Stromal Cell–Derived Factor-1α Levels on Tac1 Expression in Nontumorigenic Breast Cells. Molecular Cancer Research, 2007, 5, 373-381.	3.4	15
123	MicroRNAs regulate synthesis of the neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15484-15489.	7.1	123
124	Stromal Derived Growth Factor-1α: Another Mediator in Neural-Emerging Immune System through <i>Tac1</i> Expression in Bone Marrow Stromal Cells. Journal of Immunology, 2007, 178, 2075-2082.	0.8	28
125	Current Advances in the Treatment of Parkinsons Disease with Stem Cells. Current Neurovascular Research, 2007, 4, 99-109.	1.1	25
126	Synergy between the RE-1 Silencer of Transcription and NFκB in the Repression of the Neurotransmitter Gene TAC1 in Human Mesenchymal Stem Cells. Journal of Biological Chemistry, 2007, 282, 30039-30050.	3.4	33

#	Article	IF	CITATIONS
127	Nuclear Factor-κB Is Central to the Expression of Truncated Neurokinin-1 Receptor in Breast Cancer: Implication for Breast Cancer Cell Quiescence within Bone Marrow Stroma. Cancer Research, 2007, 67, 1653-1659.	0.9	37
128	Implication of Possible Therapies Targeted for the Tachykinergic System with the Biology of Neurokinin Receptors and Emerging Related Proteins. Recent Patents on CNS Drug Discovery, 2007, 2, 79-84.	0.9	6
129	Tachykinins and Hematopoiesis. Clinica Chimica Acta, 2007, 385, 28-34.	1.1	23
130	Role of human HGFIN/nmbin breast cancer. Breast Cancer Research, 2007, 9, R58.	5.0	28
131	Specification of a Dopaminergic Phenotype from Adult Human Mesenchymal Stem Cells. Stem Cells, 2007, 25, 2797-2808.	3.2	168
132	Functional Similarities Among Genes Regulated by Oct4 in Human Mesenchymal and Embryonic Stem Cells. Stem Cells, 2007, 25, 3143-3154.	3.2	228
133	An in vitro method to study the effects of hematopoietic regulators during immune and blood cell development. Biological Procedures Online, 2007, 9, 56-64.	2.9	13
134	The immune properties of mesenchymal stem cells. International Journal of Biomedical Science, 2007, 3, 76-80.	0.1	12
135	Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-13. Blood, 2006, 107, 4817-4824.	1.4	394
136	SDF-1α regulation in breast cancer cells contacting bone marrow stroma is critical for normal hematopoiesis. Blood, 2006, 108, 3245-3252.	1.4	64
137	BONE MARROW FAILURE IN MALE RATS FOLLOWING TRAUMA/HEMORRHAGIC SHOCK (T/HS) IS MEDIATED BY MESENTERIC LYMPH AND MODULATED BY CASTRATION. Shock, 2006, 25, 12-16.	2.1	19
138	G protein-coupled receptors in haematopoietic disruption. Expert Opinion on Biological Therapy, 2006, 6, 109-120.	3.1	18
139	Neurons Derived From Human Mesenchymal Stem Cells Show Synaptic Transmission and Can Be Induced to Produce the Neurotransmitter Substance P by Interleukin-1α. Stem Cells, 2005, 23, 383-391.	3.2	180
140	A paradoxical role for IFN- \hat{I}^3 in the immune properties of mesenchymal stem cells during viral challenge. Experimental Hematology, 2005, 33, 796-803.	0.4	54
141	Stromal Derived Growth Factor-1alpha as a Beacon for Stem Cell Homing in Development and Injury. Current Neurovascular Research, 2005, 2, 319-329.	1.1	23
142	Transformation of breast cells by truncated neurokinin-1 receptor is secondary to activation by preprotachykinin-A peptides. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17436-17441.	7.1	60
143	Tachykinins in the emerging immune system: relevance to bone marrow homeostasis and maintenance of hematopoietic stem cells. Frontiers in Bioscience - Landmark, 2004, 9, 1782.	3.0	58
144	Bone Marrow Stroma Influences Transforming Growth Factor-Î ² Production in Breast Cancer Cells to Regulate c-myc Activation of the Preprotachykinin-I Gene in Breast Cancer Cells. Cancer Research, 2004, 64, 6327-6336.	0.9	52

#	Article	IF	CITATIONS
145	Facilitating Role of Preprotachykinin-I Gene in the Integration of Breast Cancer Cells within the Stromal Compartment of the Bone Marrow. Cancer Research, 2004, 64, 2874-2881.	0.9	74
146	The HGFIN Gene Mediates Cell Cycle Quiescence of CD34+/CD38-: Implications for Hematopoietic Stem Cell Expansion and Gene Therapy Blood, 2004, 104, 1698-1698.	1.4	0
147	Crosstalk between neurokinin receptors is relevant to hematopoietic regulation: cloning and characterization of neurokinin-2 promoter. Journal of Neuroimmunology, 2003, 138, 65-75.	2.3	31
148	Hematopoietic growth factor inducible neurokinin-1 type: a transmembrane protein that is similar to neurokinin 1 interacts with substance P. Regulatory Peptides, 2003, 111, 169-178.	1.9	53
149	Defect in the lymphoid compartment might account for CD8+-mediated effects in the pathophysiology of pure red cell aplasia. Clinical Immunology, 2003, 108, 248-256.	3.2	3
150	Veto-Like Activity of Mesenchymal Stem Cells: Functional Discrimination Between Cellular Responses to Alloantigens and Recall Antigens. Journal of Immunology, 2003, 171, 3426-3434.	0.8	417
151	Structural similarity between the bone marrow extracellular matrix protein and neurokinin 1 could be the limiting factor in the hematopoietic effects of substance P. Canadian Journal of Physiology and Pharmacology, 2002, 80, 475-481.	1.4	11
152	Oxygen saturation in the bone marrow of healthy volunteers. Blood, 2002, 99, 394-394.	1.4	273
153	Vasoactive intestinal peptide (VIP) inhibits the proliferation of bone marrow progenitors through the VPAC1 receptor. Experimental Hematology, 2002, 30, 1001-1009.	0.4	34
154	Negative feedback on the effects of stem cell factor on hematopoiesis is partly mediated through neutral endopeptidase activity on substance P: a combined functional and proteomic study. Blood, 2001, 98, 2697-2706.	1.4	54
155	The dynamics of bone marrow stromal cells in the proliferation of multipotent hematopoietic progenitors by substance P: an understanding of the effects of a neurotransmitter on the differentiating hematopoietic stem cell. Journal of Neuroimmunology, 2001, 121, 22-31.	2.3	45
156	Cloning of Human Preprotachykinin-I Promoter and the Role of Cyclic Adenosine 5′-Monophosphate Response Elements in Its Expression by IL-1 and Stem Cell Factor. Journal of Immunology, 2001, 166, 2553-2561.	0.8	51
157	Induction of Hypoxia-Inducible Factor- $1\hat{l}\pm$ and Activation of Caspase-3 in Hypoxia-Reoxygenated Bone Marrow Stroma Is Negatively Regulated by the Delayed Production of Substance P. Journal of Immunology, 2001, 167, 4600-4608.	0.8	21
158	Hematopoietic Regulation Mediated by Interactions Among the Neurokinins and Cytokines. Leukemia and Lymphoma, 1997, 28, 1-10.	1.3	69
159	Restoration of Aged Hematopoietic Cells by Their Young Counterparts Through Instructive Microvesicle Release. SSRN Electronic Journal, 0, , .	0.4	O