Woon Ju Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7388534/publications.pdf

Version: 2024-02-01

394421 2,026 27 19 citations h-index papers

g-index 27 27 27 2116 docs citations times ranked citing authors all docs

552781

26

#	Article	IF	CITATIONS
1	Folding of Circularly Permuted and Split Outer Membrane Protein F via Electrostatic Interactions with Terminal Residues. Biochemistry, 2021, 60, 1787-1796.	2.5	O
2	Genomic Determinants Encode the Reactivity and Regioselectivity of Flavin-Dependent Halogenases in Bacterial Genomes and Metagenomes. MSystems, 2021, 6, e0005321.	3.8	2
3	Molecular mechanism underlying substrate recognition of the peptide macrocyclase PsnB. Nature Chemical Biology, 2021, 17, 1123-1131.	8.0	18
4	Design of artificial metalloenzymes with multiple inorganic elements: The more the merrier. Journal of Inorganic Biochemistry, 2021, 223, 111552.	3. 5	8
5	Symmetry-related residues as promising hotspots for the evolution of <i>de novo</i> oligomeric enzymes. Chemical Science, 2021, 12, 5091-5101.	7.4	5
6	Discovery of Novel Gene Functions by Chemistry-Guided Targeted Sequence Analysis. Biochemistry, 2020, 59, 10-11.	2.5	2
7	Proteins as diverse, efficient, and evolvable scaffolds for artificial metalloenzymes. Chemical Communications, 2020, 56, 9586-9599.	4.1	28
8	Emergence of metal selectivity and promiscuity in metalloenzymes. Journal of Biological Inorganic Chemistry, 2019, 24, 517-531.	2.6	40
9	Diverse protein assembly driven by metal and chelating amino acids with selectivity and tunability. Nature Communications, 2019, 10, 5545.	12.8	52
10	Integrative metagenomic and biochemical studies on rifamycin ADP-ribosyltransferases discovered in the sediment microbiome. Scientific Reports, 2018, 8, 12143.	3.3	7
11	Importance of Scaffold Flexibility/Rigidity in the Design and Directed Evolution of Artificial Metallo- \hat{l}^2 -lactamases. Journal of the American Chemical Society, 2017, 139, 16772-16779.	13.7	39
12	A designed supramolecular protein assembly with in vivo enzymatic activity. Science, 2014, 346, 1525-1528.	12.6	236
13	Interfacial metal coordination in engineered protein and peptide assemblies. Current Opinion in Chemical Biology, 2014, 19, 42-49.	6.1	83
14	Metals in Protein–Protein Interfaces. Annual Review of Biophysics, 2014, 43, 409-431.	10.0	63
15	Mechanistic Studies of Reactions of Peroxodiiron(III) Intermediates in T201 Variants of Toluene/ <i>o</i> o-Xylene Monooxygenase Hydroxylase. Biochemistry, 2011, 50, 5391-5399.	2.5	21
16	Multiple Roles of Component Proteins in Bacterial Multicomponent Monooxygenases: Phenol Hydroxylase and Toluene/ <i>o</i> >Aylene Monooxygenase from <i>Pseudomonas</i> sp. OX1. Biochemistry, 2011, 50, 1788-1798.	2.5	30
17	Insights into the Different Dioxygen Activation Pathways of Methane and Toluene Monooxygenase Hydroxylases. Journal of the American Chemical Society, 2011, 133, 7384-7397.	13.7	45
18	Tracking a defined route for O ₂ migration in a dioxygen-activating diiron enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14795-14800.	7.1	28

#	Article	IF	CITATIONS
19	Active Site Threonine Facilitates Proton Transfer during Dioxygen Activation at the Diiron Center of Toluene/o-Xylene Monooxygenase Hydroxylase. Journal of the American Chemical Society, 2010, 132, 13582-13585.	13.7	36
20	Characterization of a Peroxodiiron(III) Intermediate in the T201S Variant of Toluene/ <i>o</i> ooooooo	13.7	37
21	Synthesis, Characterization, and Reactivities of Manganese(V)â^Oxo Porphyrin Complexes. Journal of the American Chemical Society, 2007, 129, 1268-1277.	13.7	238
22	Mechanistic Insight into the Aromatic Hydroxylation by High-Valent Iron(IV)-oxo Porphyrin π-Cation Radical Complexes. Journal of Organic Chemistry, 2007, 72, 6301-6304.	3.2	67
23	Mechanistic Insights into the Reversible Formation of Iodosylarene-Iron Porphyrin Complexes in the Reactions of Oxoiron(IV) Porphyrin π-Cation Radicals and Iodoarenes: Equilibrium, Epoxidizing Intermediate, and Oxygen Exchange. Chemistry - A European Journal, 2006, 12, 130-137.	3.3	45
24	Parallel mechanistic studies on the counterion effect of manganese salen and porphyrin complexes on olefin epoxidation by iodosylarenes. Journal of Inorganic Biochemistry, 2005, 99, 424-431.	3.5	38
25	Oxoiron(IV) porphyrin π-cation radical complexes with a chameleon behavior in cytochrome P450 model reactions. Journal of Biological Inorganic Chemistry, 2005, 10, 294-304.	2.6	153
26	Oxidizing intermediates in cytochrome P450 model reactions. Journal of Biological Inorganic Chemistry, 2004, 9, 654-660.	2.6	114
27	Nonheme FelVO Complexes That Can Oxidize the Câ°'H Bonds of Cyclohexane at Room Temperature. Journal of the American Chemical Society, 2004, 126, 472-473.	13.7	591