Tarun Belwal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7388498/publications.pdf

Version: 2024-02-01

96 papers

4,482 citations

94433 37 h-index 61 g-index

97 all docs

97
docs citations

97 times ranked 5037 citing authors

#	Article	IF	CITATIONS
1	A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. TrAC - Trends in Analytical Chemistry, 2018, 100, 82-102.	11.4	278
2	Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food Chemistry, 2016, 207, 115-124.	8.2	246
3	Sono-physical and sono-chemical effects of ultrasound: Primary applications in extraction and freezing operations and influence on food components. Ultrasonics Sonochemistry, 2020, 60, 104726.	8.2	177
4	Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocolloids, 2021, 115, 106595.	10.7	173
5	Polyphenols in the treatment of autoimmune diseases. Autoimmunity Reviews, 2019, 18, 647-657.	5.8	155
6	Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Seminars in Cancer Biology, 2021, 69, 200-211.	9.6	129
7	Optimization of ultrasonic-assisted extraction (UAE) of phenolics and antioxidant compounds from rhizomes of Rheum moorcroftianum using response surface methodology (RSM). Industrial Crops and Products, 2018, 119, 218-225.	5.2	127
8	Dietary Anthocyanins and Insulin Resistance: When Food Becomes a Medicine. Nutrients, 2017, 9, 1111.	4.1	113
9	Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydrate Polymers, 2020, 242, 116388.	10.2	105
10	Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TrAC - Trends in Analytical Chemistry, 2020, 127, 115895.	11.4	104
11	Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review. Trends in Food Science and Technology, 2019, 92, 94-110.	15.1	98
12	Sonication-synergistic natural deep eutectic solvent as a green and efficient approach for extraction of phenolic compounds from peels of Carya cathayensis Sarg. Food Chemistry, 2021, 355, 129577.	8.2	96
13	Naringenin and its Nano-formulations for Fatty Liver: Cellular Modes of Action and Clinical Perspective. Current Pharmaceutical Biotechnology, 2018, 19, 196-205.	1.6	82
14	Oral microbiota and Alzheimer's disease: Do all roads lead to Rome?. Pharmacological Research, 2020, 151, 104582.	7.1	79
15	Phytopharmacology of Acerola (Malpighia spp.) and its potential as functional food. Trends in Food Science and Technology, 2018, 74, 99-106.	15.1	78
16	Improved lead removal from aqueous solution using novel porous bentonite - and calcite-biochar composite. Science of the Total Environment, 2020, 709, 136171.	8.0	76
17	Optimization model for ultrasonic-assisted and scale-up extraction of anthocyanins from Pyrus communis â€~Starkrimson' fruit peel. Food Chemistry, 2019, 297, 124993.	8.2	75
18	Interaction and binding mechanism of cyanidin-3-O-glucoside to ovalbumin in varying pH conditions: A spectroscopic and molecular docking study. Food Chemistry, 2020, 320, 126616.	8.2	74

#	Article	IF	CITATIONS
19	Phytosterols and their derivatives: Potential healthâ€promoting uses against lipid metabolism and associated diseases, mechanism, and safety issues. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 1243-1267.	11.7	72
20	Utilization of wastewater from edible oil industry, turning waste into valuable products: A review. Trends in Food Science and Technology, 2020, 99, 21-33.	15.1	70
21	Trends of polyphenolics and anthocyanins accumulation along ripening stages of wild edible fruits of Indian Himalayan region. Scientific Reports, 2019, 9, 5894.	3.3	67
22	Fruits of <scp><i>Terminalia chebula</i></scp> Retz.: A review on traditional uses, bioactive chemical constituents and pharmacological activities. Phytotherapy Research, 2020, 34, 2518-2533.	5.8	66
23	Protein-polysaccharide complex coated W/O/W emulsion as secondary microcapsule for hydrophilic arbutin and hydrophobic coumaric acid. Food Chemistry, 2019, 300, 125171.	8.2	65
24	Natural deep eutectic solvent enhanced pulse-ultrasonication assisted extraction as a multi-stability protective and efficient green strategy to extract anthocyanin from blueberry pomace. LWT - Food Science and Technology, 2021, 144, 111220.	5.2	65
25	Microwave-assisted extraction (MAE) conditions using polynomial design for improving antioxidant phytochemicals in Berberis asiatica Roxb. ex DC. leaves. Industrial Crops and Products, 2017, 95, 393-403.	5. 2	63
26	Nanomaterialâ€based biosensors for sensing key foodborne pathogens: Advances from recent decades. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 1465-1487.	11.7	63
27	Anthocyanins, multi-functional natural products of industrial relevance: Recent biotechnological advances. Biotechnology Advances, 2020, 43, 107600.	11.7	62
28	Phytostilbenes as agrochemicals: biosynthesis, bioactivity, metabolic engineering and biotechnology. Natural Product Reports, 2021, 38, 1282-1329.	10.3	56
29	Whole-cell biocatalytic, enzymatic and green chemistry methods for the production of resveratrol and its derivatives. Biotechnology Advances, 2020, 39, 107461.	11.7	55
30	Ultrasonic impact on viscosity and extraction efficiency of polyethylene glycol: A greener approach for anthocyanins recovery from purple sweet potato. Food Chemistry, 2019, 283, 59-67.	8.2	49
31	Natural products, PGC-1, and Duchenne muscular dystrophy. Acta Pharmaceutica Sinica B, 2020, 10, 734-745.	12.0	48
32	A comprehensive review on phenolic compounds from edible mushrooms: Occurrence, biological activity, application and future prospective. Critical Reviews in Food Science and Nutrition, 2022, 62, 6204-6224.	10.3	48
33	Dietary Flavonoids in the Management of Huntington's Disease: Mechanism and Clinical Perspective. EFood, 2020, 1, 38-52.	3.1	47
34	Optimized microwave assisted extraction (MAE) of alkaloids and polyphenols from Berberis roots using multiple-component analysis. Scientific Reports, 2020, 10, 917.	3.3	46
35	UPLC-Triple-TOF/MS characterization of phenolic constituents and the influence of natural deep eutectic solvents on extraction of Carya cathayensis Sarg. peels: Composition, extraction mechanism and in vitro biological activities. Food Chemistry, 2022, 370, 131042.	8.2	44
36	An improved method for extraction of nutraceutically important polyphenolics from Berberis jaeschkeana C.K. Schneid. fruits. Food Chemistry, 2017, 230, 657-666.	8.2	41

#	Article	IF	CITATIONS
37	Novel multi-phase nano-emulsion preparation for co-loading hydrophilic arbutin and hydrophobic coumaric acid using hydrocolloids. Food Hydrocolloids, 2019, 93, 92-101.	10.7	41
38	Exogenous Melatonin and Abscisic Acid Expedite the Flavonoids Biosynthesis in Grape Berry of Vitis vinifera cv. Kyoho. Molecules, 2020, 25, 12.	3.8	39
39	Flavonoids targeting NRF2 in neurodegenerative disorders. Food and Chemical Toxicology, 2020, 146, 111817.	3.6	39
40	Occurrence, detection, and dissipation of pesticide residue in plant-derived foodstuff: A state-of-the-art review. Food Chemistry, 2022, 384, 132494.	8.2	39
41	Targeting epigenetics in cancer: therapeutic potential of flavonoids. Critical Reviews in Food Science and Nutrition, 2021, 61, 1616-1639.	10.3	38
42	Preparation and application of novel rice husk biochar–calcite composites for phosphate removal from aqueous medium. Journal of Cleaner Production, 2021, 299, 126802.	9.3	38
43	Effect of Nano-SiOx/Chitosan Complex Coating on the Physicochemical Characteristics and Preservation Performance of Green Tomato. Molecules, 2019, 24, 4552.	3.8	37
44	Extraction optimization, antidiabetic and antiglycation potentials of aqueous glycerol extract from rice (Oryza sativa L.) bran. LWT - Food Science and Technology, 2019, 103, 147-154.	5.2	34
45	Oxidative DNA damage protective activity and antioxidant potential of Ashtvarga species growing in the Indian Himalayan Region. Industrial Crops and Products, 2017, 102, 173-179.	5.2	32
46	Direct detection of Pb2+ and Cd2+ in juice and beverage samples using PDMS modified nanochannels electrochemical sensors. Food Chemistry, 2021, 356, 129632.	8.2	32
47	Ultrasonic-assisted modifications of macroporous resin to improve anthocyanin purification from a Pyrus communis var. Starkrimson extract. Ultrasonics Sonochemistry, 2020, 62, 104853.	8.2	30
48	Extraction and Characterization of Phenolic Compounds from Bamboo Shoot Shell Under Optimized Ultrasonic-Assisted Conditions: a Potential Source of Nutraceutical Compounds. Food and Bioprocess Technology, 2019, 12, 1741-1755.	4.7	29
49	Valorization of lotus byproduct (Receptaculum Nelumbinis) under green extraction condition. Food and Bioproducts Processing, 2019, 115, 110-117.	3.6	29
50	Elevated CO2 alleviates browning development by modulating metabolisms of membrane lipids, proline, and GABA in fresh-cut Asian pear fruit. Scientia Horticulturae, 2021, 281, 109932.	3.6	28
51	A novel W/O/W double emulsion co-delivering brassinolide and cinnamon essential oil delayed the senescence of broccoli via regulating chlorophyll degradation and energy metabolism. Food Chemistry, 2021, 356, 129704.	8.2	28
52	Medicinal plants and their isolated phytochemicals for the management of chemotherapy-induced neuropathy: therapeutic targets and clinical perspective. DARU, Journal of Pharmaceutical Sciences, 2019, 27, 389-406.	2.0	27
53	Effects of elevated CO2 on pigment metabolism of postharvest mandarin fruit for degreening. Food Chemistry, 2020, 318, 126462.	8.2	27
54	The chemical composition and potential role of epicuticular and intracuticular wax in four cultivars of table grapes. Postharvest Biology and Technology, 2021, 173, 111430.	6.0	27

#	Article	IF	CITATIONS
55	Insights into chemometric algorithms for quality attributes and hazards detection in foodstuffs using Raman/surface enhanced Raman spectroscopy. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2476-2507.	11.7	27
56	Nanoporous hydrogel for direct digital nucleic acid amplification in untreated complex matrices for single bacteria counting. Biosensors and Bioelectronics, 2021, 184, 113199.	10.1	27
57	Chitosan-based melatonin bilayer coating for maintaining quality of fresh-cut products. Carbohydrate Polymers, 2020, 235, 115973.	10.2	26
58	Relationship of Wine Consumption with Alzheimer's Disease. Nutrients, 2020, 12, 206.	4.1	26
59	Involvement of energy metabolism and amino acid metabolism in quality attributes of postharvest Pleurotus eryngii treated with a novel phase change material. Postharvest Biology and Technology, 2021, 173, 111427.	6.0	25
60	Application of Nanomaterials in Isothermal Nucleic Acid Amplification. Small, 2022, 18, e2102711.	10.0	25
61	Targeting mTORs by omega-3 fatty acids: A possible novel therapeutic strategy for neurodegeneration?. Pharmacological Research, 2018, 135, 37-48.	7.1	24
62	Phenolic compounds, antioxidant capacity and antimutagenic activity in different growth stages of in vitro raised plants of Origanum vulgare L Molecular Biology Reports, 2019, 46, 2231-2241.	2.3	24
63	Effects of different drying techniques on the quality and bioactive compounds of plant-based products: a critical review on current trends. Drying Technology, 2022, 40, 1539-1561.	3.1	22
64	Influence of seed priming and storage time on germination and enzymatic activity of selected Berberis species. Plant Growth Regulation, 2015, 77, 189-199.	3.4	21
65	Implications of grape extract and its nanoformulated bioactive agent resveratrol against skin disorders. Archives of Dermatological Research, 2019, 311, 577-588.	1.9	21
66	Phytosterols extraction from hickory (Carya cathayensis Sarg.) husk with a green direct citric acid hydrolysis extraction method. Food Chemistry, 2020, 315, 126217.	8.2	21
67	Polyphenolics in leaves of Paris polyphylla : An important high value Himalayan medicinal herb. Industrial Crops and Products, 2018, 117, 66-74.	5.2	20
68	Purification and identification of rice bran (<i>Oryza sativa L</i> .) phenolic compounds with ⟨i⟩inâ€vitro antioxidant and antidiabetic activity using macroporous resins. International Journal of Food Science and Technology, 2019, 54, 715-722.	2.7	20
69	FaMYB9 is involved in the regulation of C6 volatile biosynthesis in strawberry. Plant Science, 2020, 293, 110422.	3.6	20
70	Evaluation of the <i>status quo</i> of polyphenols analysis: Part Iâ€"phytochemistry, bioactivity, interactions, and industrial uses. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3191-3218.	11.7	19
71	The science of matcha: Bioactive compounds, analytical techniques and biological properties. Trends in Food Science and Technology, 2021, 118, 735-743.	15.1	19
72	Effect of modified atmosphere packaging of different oxygen levels on cooking qualities and phytochemicals of brown rice during accelerated aging storage at 37 °C. Food Packaging and Shelf Life, 2020, 25, 100529.	7. 5	15

#	Article	IF	CITATIONS
73	Novel bind-then-release model based on fluorescence spectroscopy analysis with molecular docking simulation: New insights to zero-order release of arbutin and coumaric acid. Food Hydrocolloids, 2021, 112, 106356.	10.7	15
74	The evidence of health benefits and food applications of Thymus vulgaris L Trends in Food Science and Technology, 2021, 117, 218-227.	15.1	15
75	Genus Vanda: A review on traditional uses, bioactive chemical constituents and pharmacological activities. Journal of Ethnopharmacology, 2019, 229, 46-53.	4.1	14
76	Interference-free Detection of Caffeine in Complex Matrices Using a Nanochannel Electrode Modified with Binary Hydrophilic–Hydrophobic PDMS. ACS Sensors, 2021, 6, 1604-1612.	7.8	13
77	Sphingolipids in foodstuff: Compositions, distribution, digestion, metabolism and health effects – A comprehensive review. Food Research International, 2021, 147, 110566.	6.2	13
78	Optimization and Mechanism of Phytochemicals Extraction from Camellia Oleifera Shells Using Novel Biosurfactant Nanobubbles Solution Coupled with Ultrasonication. Food and Bioprocess Technology, 2022, 15, 1101-1114.	4.7	13
79	Generation and characterization of nanobubbles in ionic liquid for a green extraction of polyphenols from Carya cathayensis Sarg. Food Chemistry, 2022, 369, 130932.	8.2	12
80	Harnessing polyphenol power by targeting eNOS for vascular diseases. Critical Reviews in Food Science and Nutrition, 2023, 63, 2093-2118.	10.3	10
81	Optimization of ultrasonic-assisted extraction for bioactive compounds in Rubus ellipticus fruits: An important source for nutraceutical and functional foods. Sustainable Chemistry and Pharmacy, 2022, 25, 100603.	3.3	10
82	Genus Blepharis (Acanthaceae): A review of ethnomedicinally used species, and their phytochemistry and pharmacological activities. Journal of Ethnopharmacology, 2021, 265, 113255.	4.1	9
83	Athyrium plants - Review on phytopharmacy properties. Journal of Traditional and Complementary Medicine, 2019, 9, 201-205.	2.7	8
84	High Carbon Dioxide Treatment Modulates Sugar Metabolism and Maintains the Quality of Fresh-Cut Pear Fruit. Molecules, 2020, 25, 4261.	3.8	8
85	Amphiphilic and Biocompatible DNA Origamiâ€Based Emulsion Formation and Nanopore Release for Antiâ€Melanogenesis Therapy. Small, 2021, 17, e2104831.	10.0	8
86	Influence of the Red LEDs Light Irradiation on the Quality and Chemical Attributes of Postharvest Table Grape (Vitis vinifera L.) During Storage. Food and Bioprocess Technology, 2022, 15, 1436-1447.	4.7	7
87	Solvent-free, ultrafast and ultrathin PDMS coating triggered by plasma for molecule separation and release. Green Chemistry, 2021, 23, 4181-4190.	9.0	6
88	<i>In vitro</i> propagation and antioxidant potential of <i>Berberis asiatica</i> from Western Himalaya. Plant Biosystems, 2022, 156, 490-496.	1.6	6
89	A Comprehensive Review on Preservation of Shiitake Mushroom (<i>Lentinus Edodes</i>): Techniques, Research Advances and Influence on Quality Traits. Food Reviews International, 2023, 39, 2742-2775.	8.4	6
90	Updated insights into anthocyanin stability behavior from bases to cases: Why and why not anthocyanins lose during food processing. Critical Reviews in Food Science and Nutrition, 2023, 63, 8639-8671.	10.3	6

TARUN BELWAL

#	ARTICLE	IF	CITATION
91	Effect of advanced/hybrid oxidation process involving ultrasonication and ultraviolet radiation (sonophotolysis) on anthocyanin stability: Degradation kinetics and mechanism. Food Chemistry, 2022, 370, 131083.	8.2	5
92	Effect of ultrasound on extraction and stability of polyphenols from Berberis jaeschkeana C.K. Schneid fruits: A comparative study. Sustainable Chemistry and Pharmacy, 2022, 27, 100649.	3.3	4
93	Optimized extraction of polyphenolic antioxidants from the leaves of Himalayan Oak species. PLoS ONE, 2021, 16, e0259350.	2.5	3
94	Neuroprotective Potential of Bacopa monnieri: Modulation of Inflammatory Signals. CNS and Neurological Disorders - Drug Targets, 2022, 21, .	1.4	3
95	Natural Resources for Human Health: A New Interdisciplinary Journal Dedicated to Natural Sciences. , 2021, 1, 1-2.		O
96	Amphiphilic and Biocompatible DNA Origamiâ€Based Emulsion Formation and Nanopore Release for Antiâ€Melanogenesis Therapy (Small 45/2021). Small, 2021, 17, 2170239.	10.0	0