Sean P Colgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7387392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial Metabolite Regulation of Epithelial Cell-Cell Interactions and Barrier Function. Cells, 2022, 11, 944.	1.8	15
2	Disruption of monocyte-macrophage differentiation and trafficking by a heme analog during active inflammation. Mucosal Immunology, 2022, 15, 244-256.	2.7	3
3	Butyrate Analogues Mimicking Hypoxia by the Chemical Stabilization of Hypoxia Inducible Factor (HIF). FASEB Journal, 2022, 36, .	0.2	0
4	Acidosis regulation of epithelial barrier function and immune signaling. FASEB Journal, 2022, 36, .	0.2	0
5	Adenosine Awakens Metabolism to Enhance Growth-Independent Killing of Tolerant and Persister Bacteria across Multiple Classes of Antibiotics. MBio, 2022, 13, e0048022.	1.8	14
6	Contact-dependent, polarized acidification response during neutrophil–epithelial interactions. Journal of Leukocyte Biology, 2022, 112, 1543-1553.	1.5	1
7	Bile acids modulate colonic MAdCAM-1 expression in a murine model of combined cholestasis and colitis. Mucosal Immunology, 2021, 14, 479-490.	2.7	16
8	Microbiota-derived butyrate is an endogenous HIF prolyl hydroxylase inhibitor. Gut Microbes, 2021, 13, 1938380.	4.3	30
9	Intestinal Inflammation as a Dysbiosis of Energy Procurement: New Insights into an Old Topic. Gut Microbes, 2021, 13, 1-20.	4.3	13
10	Transplantation of an obesity-associated human gut microbiota to mice induces vascular dysfunction and glucose intolerance. Gut Microbes, 2021, 13, 1940791.	4.3	20
11	The MUC5B-associated variant rs35705950 resides within an enhancer subject to lineage- and disease-dependent epigenetic remodeling. JCI Insight, 2021, 6, .	2.3	21
12	Eosinophils attenuate hepatic ischemia-reperfusion injury in mice through ST2-dependent IL-13 production. Science Translational Medicine, 2021, 13, .	5.8	31
13	Microbialâ€derived indoles inhibit neutrophil myeloperoxidase to diminish bystander tissue damage. FASEB Journal, 2021, 35, e21552.	0.2	17
14	Creatine Supplementation for Patients with Inflammatory Bowel Diseases: A Scientific Rationale for a Clinical Trial. Nutrients, 2021, 13, 1429.	1.7	15
15	Mucosal acidosis elicits a unique molecular signature in epithelia and intestinal tissue mediated by GPR31-induced CREB phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
16	Insights into the impact of inflammatory acidification on the mucosa. FASEB Journal, 2021, 35, .	0.2	0
17	Microbiotaâ€derived butyrate is an endogenous inhibitor of HIF prolylâ€hydroxylases. FASEB Journal, 2021, 35, .	0.2	0
18	Lung neutrophils on a paleo diet: lean, mean inflammatory machines. Journal of Clinical Investigation, 2021, 131, .	3.9	0

#	Article	IF	CITATIONS
19	In vitro Monitoring of Extracellular pH in Real-Time. Journal of Visualized Experiments, 2021, , .	0.2	0
20	HIF2 keeps paces in tight hypoxic spaces. Blood, 2021, 137, 3323-3324.	0.6	1
21	Metabolic Host–Microbiota Interactions in Autophagy and the Pathogenesis of Inflammatory Bowel Disease (IBD). Pharmaceuticals, 2021, 14, 708.	1.7	12
22	Hypoxiaâ€Inducible Factorâ€2α Reprograms Liver Macrophages to Protect Against Acute Liver Injury Through the Production of Interleukinâ€6. Hepatology, 2020, 71, 2105-2117.	3.6	50
23	Adaptation to inflammatory acidity through neutrophil-derived adenosine regulation of SLC26A3. Mucosal Immunology, 2020, 13, 230-244.	2.7	17
24	Microbiota-Sourced Purines Support Wound Healing and Mucous Barrier Function. IScience, 2020, 23, 101226.	1.9	45
25	The HIF target ATG9A is essential for epithelial barrier function and tight junction biogenesis. Molecular Biology of the Cell, 2020, 31, 2249-2258.	0.9	16
26	Resolvins resolve to heal mucosal wounds. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10621-10622.	3.3	4
27	Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11648-11657.	3.3	165
28	Markers of Hypoxia Correlate with Histologic and Endoscopic Severity of Colitis in Inflammatory Bowel Disease. Hypoxia (Auckland, N Z), 2020, Volume 8, 1-12.	1.9	4
29	Hypoxia and Innate Immunity: Keeping Up with the HIFsters. Annual Review of Immunology, 2020, 38, 341-363.	9.5	105
30	Platelet activating factor receptor acts to limit colitisâ€induced liver inflammation. FASEB Journal, 2020, 34, 7718-7732.	0.2	14
31	Creatine Transporter, Reduced in Colon Tissues From Patients With Inflammatory Bowel Diseases, Regulates Energy Balance in Intestinal Epithelial Cells, Epithelial Integrity, and Barrier Function. Gastroenterology, 2020, 159, 984-998.e1.	0.6	46
32	Dynamic regulation of actinâ€binding protein synaptopodin by butyrate promotes intestinal epithelial barrier function. FASEB Journal, 2020, 34, 1-1.	0.2	0
33	Bile Acids Modulate Colonic MAdCAMâ€1 Expression in a Murine Model of PSCâ€IBD. FASEB Journal, 2020, 34, 1-1.	0.2	Ο
34	Intense Light-Mediated Circadian Cardioprotection via Transcriptional Reprogramming of the Endothelium. Cell Reports, 2019, 28, 1471-1484.e11.	2.9	35
35	Cholestatic liver disease results increased production of reactive aldehydes and an atypical periportal hepatic antioxidant response. Free Radical Biology and Medicine, 2019, 143, 101-114.	1.3	13
36	Oral vitamin B ₁₂ supplement is delivered to the distal gut, altering the corrinoid profile and selectively depleting <i>Bacteroides</i> in C57BL/6 mice. Gut Microbes, 2019, 10, 654-662.	4.3	28

#	Article	IF	CITATIONS
37	Control and dysregulation of redox signalling in the gastrointestinal tract. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 106-120.	8.2	118
38	Microbial Indole Metabolites Provide a Novel Pathway for Regulation of Intestinal Homeostasis. FASEB Journal, 2019, 33, 34.9.	0.2	1
39	Epithelial HIF-1α/claudin-1 axis regulates barrier dysfunction in eosinophilic esophagitis. Journal of Clinical Investigation, 2019, 129, 3224-3235.	3.9	57
40	Adenosine controls tissue fluid and pH homeostasis through transcriptional regulation of SLC26A3. FASEB Journal, 2019, 33, 34.8.	0.2	0
41	Microbiota-Derived Indole Metabolites Promote Human and Murine Intestinal Homeostasis through Regulation of Interleukin-10 Receptor. American Journal of Pathology, 2018, 188, 1183-1194.	1.9	301
42	Hypoxanthine is a checkpoint stress metabolite in colonic epithelial energy modulation and barrier function. Journal of Biological Chemistry, 2018, 293, 6039-6051.	1.6	102
43	Subversion of Systemic Glucose Metabolism as a Mechanism to Support the Growth of Leukemia Cells. Cancer Cell, 2018, 34, 659-673.e6.	7.7	90
44	Neutrophils as sources of dinucleotide polyphosphates and metabolism by epithelial ENPP1 to influence barrier function via adenosine signaling. Molecular Biology of the Cell, 2018, 29, 2687-2699.	0.9	15
45	A Central Role for Heme Oxygenase-1 in the Control of Intestinal Epithelial Chemokine Expression. Journal of Innate Immunity, 2018, 10, 228-238.	1.8	11
46	Microbiotaâ€Derived Indole Metabolites Provide a Novel Pathway for Regulation of Intestinal Homeostasis. FASEB Journal, 2018, 32, 286.8.	0.2	0
47	Special pro-resolving mediator (SPM) actions in regulating gastro-intestinal inflammation and gut mucosal immune responses. Molecular Aspects of Medicine, 2017, 58, 93-101.	2.7	17
48	Tissue metabolism and the inflammatory bowel diseases. Journal of Molecular Medicine, 2017, 95, 905-913.	1.7	25
49	Regulation of immunity and inflammation by hypoxia in immunological niches. Nature Reviews Immunology, 2017, 17, 774-785.	10.6	430
50	Epithelial Barrier Regulation by Hypoxia-Inducible Factor. Annals of the American Thoracic Society, 2017, 14, S233-S236.	1.5	29
51	Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor–Dependent Repression of Claudin-2. Journal of Immunology, 2017, 199, 2976-2984.	0.4	341
52	Intestinal Epithelial Ecto-5′-Nucleotidase (CD73) Regulates Intestinal Colonization and Infection by Nontyphoidal Salmonella. Infection and Immunity, 2017, 85, .	1.0	17
53	Neutrophils as Components of Mucosal Homeostasis. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 329-337.	2.3	31
54	Novel therapeutic concepts for inflammatory bowel disease—from bench to bedside. Journal of Molecular Medicine, 2017, 95, 899-903.	1.7	7

#	Article	IF	CITATIONS
55	Oxygen metabolism and innate immune responses in the gut. Journal of Applied Physiology, 2017, 123, 1321-1327.	1.2	9
56	Tissue metabolism and host-microbial interactions in the intestinal mucosa. Free Radical Biology and Medicine, 2017, 105, 86-92.	1.3	26
57	Breathless in the Gut: Implications of Luminal O 2 for Microbial Pathogenicity. Cell Host and Microbe, 2016, 19, 427-428.	5.1	32
58	Hypoxia-inducible factors as molecular targets for liver diseases. Journal of Molecular Medicine, 2016, 94, 613-627.	1.7	104
59	Perturbation of neddylation-dependent NF-ήB responses in the intestinal epithelium drives apoptosis and inhibits resolution of mucosal inflammation. Molecular Biology of the Cell, 2016, 27, 3687-3694.	0.9	22
60	Neutrophils and the inflammatory tissue microenvironment in the mucosa. Immunological Reviews, 2016, 273, 112-120.	2.8	17
61	Creatine kinase in ischemic and inflammatory disorders. Clinical and Translational Medicine, 2016, 5, 31.	1.7	40
62	G2A Signaling Dampens Colitic Inflammation via Production of IFN-Î ³ . Journal of Immunology, 2016, 197, 1425-1434.	0.4	22
63	Cytokine responses and epithelial function in the intestinal mucosa. Cellular and Molecular Life Sciences, 2016, 73, 4203-4212.	2.4	51
64	Hypercapnia Suppresses the HIF-dependent Adaptive Response to Hypoxia. Journal of Biological Chemistry, 2016, 291, 11800-11808.	1.6	47
65	Hypoxia and Mucosal Inflammation. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 77-100.	9.6	100
66	Targeting hypoxia in inflammatory bowel disease. Journal of Investigative Medicine, 2016, 64, 364-368.	0.7	12
67	Oxygen metabolism and barrier regulation in the intestinal mucosa. Journal of Clinical Investigation, 2016, 126, 3680-3688.	3.9	120
68	HIF-dependent regulation of claudin-1 is central to intestinal epithelial tight junction integrity. Molecular Biology of the Cell, 2015, 26, 2252-2262.	0.9	158
69	Metabolic regulation of intestinal epithelial barrier during inflammation. Tissue Barriers, 2015, 3, e970936.	1.6	34
70	Neutrophils and inflammatory metabolism in antimicrobial functions of the mucosa. Journal of Leukocyte Biology, 2015, 98, 517-522.	1.5	25
71	Eosinophil-mediated signalling attenuates inflammatory responses in experimental colitis. Gut, 2015, 64, 1236-1247.	6.1	103
72	Neutrophils and inflammatory resolution in the mucosa. Seminars in Immunology, 2015, 27, 177-183.	2.7	39

#	Article	IF	CITATIONS
73	Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host and Microbe, 2015, 17, 662-671.	5.1	1,162
74	Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A Review in the Theme: Cellular Responses to Hypoxia. American Journal of Physiology - Cell Physiology, 2015, 309, C350-C360.	2.1	348
75	Actions of Adenosine on Cullin Neddylation: Implications for Inflammatory Responses. Computational and Structural Biotechnology Journal, 2015, 13, 273-276.	1.9	6
76	Stabilization of HIF through inhibition of Cullinâ€2 neddylation is protective in mucosal inflammatory responses. FASEB Journal, 2015, 29, 208-215.	0.2	51
77	Signaling Through the Aryl Hydrocarbon Receptor Induces Expression of the ILâ€10 Receptor on Intestinal Epithelia. FASEB Journal, 2015, 29, 142.11.	0.2	0
78	Microbeâ€Host Crosstalk between Shortâ€Chain Fatty Acids and Intestinal Epithelial HIF Provides a New Mechanism to Augment Tissue Barrier Function. FASEB Journal, 2015, 29, 282.6.	0.2	0
79	The Influence of Neddylation on the Mucosal Inflammatory Response. FASEB Journal, 2015, 29, 142.9.	0.2	1
80	Intestinal epithelial ectoâ€5′â€nucleotidase CD73 regulates the homeostasis of Salmonella typhimurium and commensal bacteria. FASEB Journal, 2015, 29, 507.8.	0.2	0
81	IFN-γ–Mediated Induction of an Apical IL-10 Receptor on Polarized Intestinal Epithelia. Journal of Immunology, 2014, 192, 1267-1276.	0.4	79
82	Transmigrating Neutrophils Shape the Mucosal Microenvironment through Localized Oxygen Depletion to Influence Resolution of Inflammation. Immunity, 2014, 40, 66-77.	6.6	373
83	Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nature Reviews Drug Discovery, 2014, 13, 852-869.	21.5	291
84	HIFâ€dependent regulation of AKAP12 (gravin) in the control of human vascular endothelial function. FASEB Journal, 2014, 28, 256-264.	0.2	20
85	Adenosine and gastrointestinal inflammation. Journal of Molecular Medicine, 2013, 91, 157-164.	1.7	41
86	Contributions of neutrophils to resolution of mucosal inflammation. Immunologic Research, 2013, 55, 75-82.	1.3	16
87	Swimming Through the Gut: Implications of Fluid Transport on the Microbiome. Digestive Diseases and Sciences, 2013, 58, 602-603.	1.1	6
88	The Inflammatory Tissue Microenvironment in IBD. Inflammatory Bowel Diseases, 2013, 19, 2238-2244.	0.9	34
89	Central Role for Endothelial Human Deneddylase-1/SENP8 in Fine-Tuning the Vascular Inflammatory Response. Journal of Immunology, 2013, 190, 392-400.	0.4	45
90	Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19820-19825.	3.3	111

#	Article	IF	CITATIONS
91	CD73 ⁺ regulatory T cells contribute to adenosineâ€mediated resolution of acute lung injury. FASEB Journal, 2013, 27, 2207-2219.	0.2	99
92	Neutrophilâ€epithelial interactions modulate the inflammatory microenvironment during colitis. FASEB Journal, 2013, 27, 137.1.	0.2	0
93	Fundamental role for HIFâ€1α in expression of enteric human β defensinâ€1. FASEB Journal, 2013, 27, 131.7.	0.2	0
94	IFNâ€Î³â€mediated Induction of an Apical ILâ€10 Receptor on Polarized Intestinal Epithelia. FASEB Journal, 2013, 27, 137.11.	0.2	0
95	Activated fluid transport regulates bacterial-epithelial interactions and significantly shifts the murine colonic microbiome. Gut Microbes, 2012, 3, 250-260.	4.3	49
96	Hypoxia-inducible factor-1 alpha–dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2784-93.	3.3	455
97	Of Microbes and Meals. Nutrition in Clinical Practice, 2012, 27, 215-225.	1.1	83
98	Implications of Protein Post-Translational Modifications in IBD. Inflammatory Bowel Diseases, 2012, 18, 1378-1388.	0.9	18
99	Adenosine and Hypoxia-Inducible Factor Signaling in Intestinal Injury and Recovery. Annual Review of Physiology, 2012, 74, 153-175.	5.6	111
100	Targeting Hypoxia to Augment Mucosal Barrier Function. Journal of Epithelial Biology & Pharmacology, 2012, 5, 67-76.	1.2	7
101	Hypoxia and Metabolic Factors That Influence Inflammatory Bowel Disease Pathogenesis. Gastroenterology, 2011, 140, 1748-1755.	0.6	102
102	†Transcriptional Imprinting' of colonic epithelia by transmigrating neutrophils reveals a central role for hypoxic signaling via local oxygen depletion. Inflammatory Bowel Diseases, 2011, 17, S72.	0.9	0
103	Intestinal epithelial innate immunity: A role for Hypoxia-mediated autophagy. Inflammatory Bowel Diseases, 2011, 17, S74.	0.9	0
104	Antimicrobial Aspects of Inflammatory Resolution in the Mucosa: A Role for Proresolving Mediators. Journal of Immunology, 2011, 187, 3475-3481.	0.4	57
105	Neutrophil transmigration triggers repair of the lung epithelium via β-catenin signaling. Proceedings of the United States of America, 2011, 108, 15990-15995.	3.3	162
106	Antiâ€inflammatory actions of adrenomedullin through fine tuning of HIF stabilization. FASEB Journal, 2011, 25, 1856-1864.	0.2	44
107	IFN-Î ³ Attenuates Hypoxia-Inducible Factor (HIF) Activity in Intestinal Epithelial Cells through Transcriptional Repression of HIF-1Î ² . Journal of Immunology, 2011, 186, 1790-1798.	0.4	25
108	An Endogenously Anti-Inflammatory Role for Methylation in Mucosal Inflammation Identified through Metabolite Profiling. Journal of Immunology, 2011, 186, 6505-6514.	0.4	59

#	Article	IF	CITATIONS
109	Hypoxia-inducible Factor-dependent Regulation of Platelet-activating Factor Receptor as a Route for Gram-Positive Bacterial Translocation across Epithelia. Molecular Biology of the Cell, 2010, 21, 538-546.	0.9	42
110	Resolvin E1-induced intestinal alkaline phosphatase promotes resolution of inflammation through LPS detoxification. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14298-14303.	3.3	161
111	Hypoxia-Inducible Factor Signaling Provides Protection in Clostridium difficile-Induced Intestinal Injury. Gastroenterology, 2010, 139, 259-269.e3.	0.6	81
112	Metabolic Shifts in Immunity and Inflammation. Journal of Immunology, 2010, 184, 4062-4068.	0.4	328
113	Hypoxia: an alarm signal during intestinal inflammation. Nature Reviews Gastroenterology and Hepatology, 2010, 7, 281-287.	8.2	376
114	Targeting the A2B adenosine receptor during gastrointestinal ischemia and inflammation. Expert Opinion on Therapeutic Targets, 2009, 13, 1267-1277.	1.5	51
115	Adenosine A _{2A} receptor is a unique angiogenic target of HIF-2α in pulmonary endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10684-10689.	3.3	124
116	Selective induction of integrin βi by hypoxiaâ€inducible factor: implications for wound healing. FASEB Journal, 2009, 23, 1338-1346.	0.2	90
117	Contribution of Adenosine A2B Receptors to Inflammatory Parameters of Experimental Colitis. Journal of Immunology, 2009, 182, 4957-4964.	0.4	140
118	Adenosine Signaling Mediates SUMO-1 Modification of lκBα during Hypoxia and Reoxygenation. Journal of Biological Chemistry, 2009, 284, 13686-13695.	1.6	33
119	Transepithelial Migration of Neutrophils. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 519-535.	1.4	309
120	Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. Blood, 2009, 113, 224-232.	0.6	196
121	Interferonâ€gamma inhibits hypoxiaâ€inducible factor (HIF) in intestinal epithelial cells through transcriptional repression of HIFâ€1 beta. FASEB Journal, 2009, 23, 570.12.	0.2	0
122	Neutrophils as Sources of Extracellular Nucleotides: Functional Consequences at the Vascular Interface. Trends in Cardiovascular Medicine, 2008, 18, 103-107.	2.3	110
123	Mucosal Protection by Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibition. Gastroenterology, 2008, 134, 145-155.	0.6	336
124	Control of IFN-αA by CD73: Implications for Mucosal Inflammation. Journal of Immunology, 2008, 180, 4246-4255.	0.4	80
125	PMNs facilitate translocation of platelets across human and mouse epithelium and together alter fluid homeostasis via epithelial cell–expressed ecto-NTPDases. Journal of Clinical Investigation, 2008, 118, 3682-3692.	3.9	87
126	Mucosal protection by hypoxiaâ€inducible factor (HIF) prolyl hydroxylase inhibition. FASEB Journal, 2008, 22, 328.3.	0.2	0

#	Article	IF	CITATIONS
127	Resolvin D1 and Its Aspirin-triggered 17R Epimer. Journal of Biological Chemistry, 2007, 282, 9323-9334.	1.6	452
128	Identification of Purα as a New Hypoxia Response Factor Responsible for Coordinated Induction of the β2 Integrin Family. Journal of Immunology, 2007, 179, 1934-1941.	0.4	31
129	Identification of vasodilatorâ€stimulated phosphoprotein (VASP) as an HIFâ€regulated tissue permeability factor during hypoxia. FASEB Journal, 2007, 21, 2613-2621.	0.2	50
130	Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution. FASEB Journal, 2007, 21, 3162-3170.	0.2	193
131	Hypoxia and gastrointestinal disease. Journal of Molecular Medicine, 2007, 85, 1295-1300.	1.7	275
132	Antiinflammatory adaptation to hypoxia through adenosine-mediated cullin-1 deneddylation. Journal of Clinical Investigation, 2007, 117, 703-711.	3.9	76
133	Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution. FASEB Journal, 2007, 21, A131.	0.2	0
134	Identification of molecular antiâ€inflammatory mechanisms of adenosine: Cullinâ€1 deneddylation during hypoxic preconditioning (HPC). FASEB Journal, 2007, 21, A131.	0.2	0
135	Endothelial catabolism of extracellular adenosine during hypoxia: the role of surface adenosine deaminase and CD26. Blood, 2006, 108, 1602-1610.	0.6	150
136	Physiological roles for ecto-5'-nucleotidase (CD73). Purinergic Signalling, 2006, 2, 351-360.	1.1	443
137	Selective induction of mucin-3 by hypoxia in intestinal epithelia. Journal of Cellular Biochemistry, 2006, 99, 1616-1627.	1.2	122
138	Transcriptional repression of Na-K-2Cl cotransporter NKCC1 by hypoxia-inducible factor-1. American Journal of Physiology - Cell Physiology, 2006, 291, C282-C289.	2.1	33
139	Anti-Inflammatory Actions of Neuroprotectin D1/Protectin D1 and Its Natural Stereoisomers: Assignments of Dihydroxy-Containing Docosatrienes. Journal of Immunology, 2006, 176, 1848-1859.	0.4	424
140	HIFâ€dependent induction of adenosine A2B receptor in hypoxia. FASEB Journal, 2006, 20, 2242-2250.	0.2	303
141	ATP Release From Activated Neutrophils Occurs via Connexin 43 and Modulates Adenosine-Dependent Endothelial Cell Function. Circulation Research, 2006, 99, 1100-1108.	2.0	314
142	HIFâ€dependent Repression of Naâ€Kâ€2Cl―Coâ€transporter (NKCC1) in Hypoxia. FASEB Journal, 2006, 20, A1	.09042	0
143	Dynamic purine signaling and metabolism during neutrophil–endothelial interactions. Purinergic Signalling, 2005, 1, 229-239	1.1	27
144	HIFâ€dependent induction of apical CD55 coordinates epithelial clearance of neutrophils. FASEB Journal, 2005, 19, 950-959.	0.2	68

#	Article	IF	CITATIONS
145	Inflammatory Hypoxia: Role of Hypoxia-Inducible Factor. Cell Cycle, 2005, 4, 255-257.	1.3	137
146	HIF-1–dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. Journal of Experimental Medicine, 2005, 202, 1493-1505.	4.2	310
147	Lipid mediator networks and leukocyte transmigration. Prostaglandins Leukotrienes and Essential Fatty Acids, 2005, 73, 197-202.	1.0	14
148	Inflammatory hypoxia: role of hypoxia-inducible factor. Cell Cycle, 2005, 4, 256-8.	1.3	70
149	Crucial Role for Ecto-5â€2-Nucleotidase (CD73) in Vascular Leakage during Hypoxia. Journal of Experimental Medicine, 2004, 200, 1395-1405.	4.2	484
150	Leukocyte adhesion during hypoxia is mediated by HIF-1-dependent induction of Â2 integrin gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10440-10445.	3.3	218
151	Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. Journal of Clinical Investigation, 2004, 114, 1098-1106.	3.9	484
152	Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood, 2004, 104, 3986-3992.	0.6	323
153	Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. Journal of Clinical Investigation, 2004, 114, 1098-1106.	3.9	358
154	Reduced Inflammation and Tissue Damage in Transgenic Rabbits Overexpressing 15-Lipoxygenase and Endogenous Anti-inflammatory Lipid Mediators. Journal of Immunology, 2003, 171, 6856-6865.	0.4	364
155	Antiadhesive Role of Apical Decay-accelerating Factor (CD55) in Human Neutrophil Transmigration across Mucosal Epithelia. Journal of Experimental Medicine, 2003, 198, 999-1010.	4.2	73
156	Coordinated Adenine Nucleotide Phosphohydrolysis and Nucleoside Signaling in Posthypoxic Endothelium. Journal of Experimental Medicine, 2003, 198, 783-796.	4.2	444
157	Lipoxin A4 and Aspirin-Triggered 15-epi-Lipoxin A4 Inhibit Human Neutrophil Migration: Comparisons Between Synthetic 15 Epimers in Chemotaxis and Transmigration with Microvessel Endothelial Cells and Epithelial Cells. Journal of Immunology, 2003, 170, 2688-2694.	0.4	111
158	Intestinal heat shock protein 110 regulates expression of CD1d on intestinal epithelial cells. Journal of Clinical Investigation, 2003, 112, 745-754.	3.9	11
159	Role of VASP in reestablishment of epithelial tight junction assembly after Ca ²⁺ switch. American Journal of Physiology - Cell Physiology, 2002, 282, C1235-C1245.	2.1	88
160	Lipid mediator-induced expression of bactericidal/ permeability-increasing protein (BPI) in human mucosal epithelia. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3902-3907.	3.3	271
161	An Aspirin-Triggered Lipoxin A4 Stable Analog Displays a Unique Topical Anti-Inflammatory Profile. Journal of Immunology, 2002, 169, 7063-7070.	0.4	94
162	Role of vasodilatorâ€stimulated phosphoprotein in protein kinase Aâ€induced changes in endothelial junctional permeability. FASEB Journal, 2002, 16, 583-585.	0.2	164

#	Article	IF	CITATIONS
163	Resolvins. Journal of Experimental Medicine, 2002, 196, 1025-1037.	4.2	1,486
164	Endothelial COX-2 induction by hypoxia liberates 6-keto-PGF1α, a potent epithelial Secretagogue. Advances in Experimental Medicine and Biology, 2002, 507, 107-112.	0.8	4
165	Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. Journal of Clinical Investigation, 2002, 110, 993-1002.	3.9	569
166	Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. Journal of Clinical Investigation, 2002, 110, 993-1002.	3.9	429
167	Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Research, 2002, 62, 3387-94.	0.4	653
168	The multiple roles of major histocompatibility complex class-I-like molecules in mucosal immune function. Acta Odontologica Scandinavica, 2001, 59, 139-144.	0.9	15
169	Phosphoinositide 3-kinase modulation of β3-integrin represents an endogenous "braking―mechanism during neutrophil transmatrix migration. Blood, 2001, 97, 3251-3258.	0.6	45
170	Hypoxia-Inducible Factor 1–Dependent Induction of Intestinal Trefoil Factor Protects Barrier Function during Hypoxia. Journal of Experimental Medicine, 2001, 193, 1027-1034.	4.2	386
171	Novel Functional Sets of Lipid-Derived Mediators with Antiinflammatory Actions Generated from Omega-3 Fatty Acids via Cyclooxygenase 2–Nonsteroidal Antiinflammatory Drugs and Transcellular Processing. Journal of Experimental Medicine, 2000, 192, 1197-1204.	4.2	1,048
172	Hypoxia-induced expression of complement receptor type 1 (CR1, CD35) in human vascular endothelial cells. American Journal of Physiology - Cell Physiology, 1999, 276, C450-C458.	2.1	45
173	Critical Role of cAMP Response Element Binding Protein Expression in Hypoxia-elicited Induction of Epithelial Tumor Necrosis Factor-α. Journal of Biological Chemistry, 1999, 274, 19447-19454.	1.6	83
174	Epithelial permeability induced by neutrophil transmigration is potentiated by hypoxia: Role of intracellular cAMP. Journal of Cellular Physiology, 1998, 176, 76-84.	2.0	54
175	Autocrine regulation of epithelial permeability by hypoxia: Role for polarized release of tumor necrosis factor α. Gastroenterology, 1998, 114, 657-668.	0.6	182
176	Neutrophil-derived 5′-Adenosine Monophosphate Promotes Endothelial Barrier Function via CD73-mediated Conversion to Adenosine and Endothelial A2B Receptor Activation. Journal of Experimental Medicine, 1998, 188, 1433-1443.	4.2	210
177	Lipoxin B ₄ regulates human monocyte/neutrophil adherence and motility: design of stable lipoxin B ₄ analogs with increased biologic activity. FASEB Journal, 1998, 12, 487-494.	0.2	92
178	Reoxygenation of Hypoxic Human Umbilical Vein Endothelial Cells Activates the Classic Complement Pathway. Circulation, 1997, 96, 326-333.	1.6	79
179	Expression and Polarization of Intercellular Adhesion Molecule-1 on Human Intestinal Epithelia: Consequences for CD11b/CD18-Mediated Interactions with Neutrophils. Molecular Medicine, 1996, 2, 489-505.	1.9	153
180	Interleukin-4 and Interleukin-13 Differentially Regulate Epithelial Chloride Secretion. Journal of Biological Chemistry, 1996, 271, 7460-7464.	1.6	115

1

	#	Article	IF	CITATIONS
181Design of Lipoxin A4 Stable Analogs That Block Transmigration and Adhesion of Human Neutrophils.1.2309Biochemistry, 1995, 34, 14609-14615.1.2309	181	Design of Lipoxin A4 Stable Analogs That Block Transmigration and Adhesion of Human Neutrophils. Biochemistry, 1995, 34, 14609-14615.	1.2	309

182 Neutrophil–Endothelial Cell Interactions. , 0, , 141-152.