List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7386312/publications.pdf Version: 2024-02-01

LUC REALLIEU

#	Article	IF	CITATIONS
1	Comparison of novel shielded nasopharynx applicator designs for intracavitary brachytherapy. Brachytherapy, 2022, 21, 229-237.	0.5	1
2	From conception to clinical trial: IViST, the first multi-sensor-based platform for real-time In Vivo Source Tracking in HDR brachytherapy. Journal of Physics: Conference Series, 2022, 2167, 012024.	0.4	0
3	Lead-doped scintillator dosimeters for detection of ultrahigh dose-rate x-rays. Physics in Medicine and Biology, 2022, 67, 105007.	3.0	2
4	On the use of polychromatic cameras for high spatial resolution spectral dose measurements. Physics in Medicine and Biology, 2022, , .	3.0	0
5	Accurate dose measurements using Cherenkov emission polarization imaging. Medical Physics, 2022, , .	3.0	1
6	External beam irradiation angle measurement using a hybrid Cerenkov-scintillation detector. Physics in Medicine and Biology, 2022, 67, 105011.	3.0	1
7	Inter-observer evaluation of a GPU-based multicriteria optimization algorithm combined with plan navigation tools for HDR brachytherapy. Brachytherapy, 2022, 21, 551-560.	0.5	4
8	Direct in-water radiation dose measurements using Cherenkov emission corrected signals from polarization imaging for a clinical radiotherapy application. Scientific Reports, 2022, 12, .	3.3	0
9	3D source tracking and error detection in HDR using two independent scintillator dosimetry systems. Medical Physics, 2021, 48, 2095-2107.	3.0	13
10	Recent Advances and Clinical Applications of Plastic Scintillators in the Field of Radiation Therapy. Topics in Applied Physics, 2021, , 425-460.	0.8	3
11	Comparative optic and dosimetric characterization of the HYPERSCINT scintillation dosimetry research platform for multipoint applications. Physics in Medicine and Biology, 2021, 66, 085009.	3.0	12
12	PO05. Brachytherapy, 2021, 20, S57-S58.	0.5	0
13	OC-0044 Clinical evaluation of an interactive multi-criteria optimisation workflow for HDR brachytherapy. Radiotherapy and Oncology, 2021, 158, S31-S33.	0.6	0
14	OC-0065 Real-time electromagnetic guidance for GYN interstitial HDR brachytherapy: a proof-of-concept. Radiotherapy and Oncology, 2021, 158, S49-S51.	0.6	0
15	PP-0150 Commissioning of a CPU-based multi-criteria optimisation algorithm for HDR brachytherapy. Radiotherapy and Oncology, 2021, 158, S113-S115.	0.6	0
16	PHSOR07 Presentation Time: 10:30 AM. Brachytherapy, 2021, 20, S26-S27.	0.5	0
17	PO-0209 Practical considerations on the use of EM tracking technology for clinical HDR brachytherapy. Radiotherapy and Oncology, 2021, 158, S168-S169.	0.6	0
18	OC-0110 Characterisation of an inorganic scintillation detector system for time resolved in vivo dosimetry. Radiotherapy and Oncology, 2021, 158, S77-S79.	0.6	0

#	Article	IF	CITATIONS
19	OC-0066 A multi-sensor-based dosimetry platform for real time source tracking in HDR brachytherapy. Radiotherapy and Oncology, 2021, 158, S51.	0.6	0
20	PHSOR08 Presentation Time: 10:35 AM. Brachytherapy, 2021, 20, S27.	0.5	0
21	PP25 Presentation Time: 4:20 PM. Brachytherapy, 2021, 20, S22-S23.	0.5	0
22	OC-0106 US-guided EM tracked system compared to OncentraProstate for HDR brachytherapy: a first in-men study. Radiotherapy and Oncology, 2021, 158, S74-S75.	0.6	0
23	Performance of an enhanced afterloader with electromagnetic tracking capabilities for channel reconstruction and error detection. Medical Physics, 2021, 48, 4402-4410.	3.0	7
24	Validation of the TOPAS Monte Carlo toolkit for HDR brachytherapy simulations. Brachytherapy, 2021, 20, 911-921.	0.5	12
25	Commissioning of an intra-operative US guided prostate HDR system integrating an EM tracking technology. Brachytherapy, 2021, 20, 1296-1304.	0.5	7
26	A highâ€Z inorganic scintillator–based detector for timeâ€resolved in vivo dosimetry during brachytherapy. Medical Physics, 2021, 48, 7382-7398.	3.0	17
27	On the use of machine learning methods for mPSD calibration in HDR brachytherapy. Physica Medica, 2021, 91, 73-79.	0.7	2
28	6: Ultra-Hypofractionated (UHF) Compared to Moderate-Hypofractionated (MHF) Prostate IGRT with HDR Brachytherapy Boost(BB): Four-Year Toxicities and Local Control. Radiotherapy and Oncology, 2021, 163, S6.	0.6	0
29	Medical Range Radiation Dosimeter Based on Polymer-Embedded Fiber Bragg Gratings. Sensors, 2021, 21, 8139.	3.8	3
30	Brachytherapy Future Directions. Seminars in Radiation Oncology, 2020, 30, 94-106.	2.2	27
31	In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice. Physics and Imaging in Radiation Oncology, 2020, 16, 1-11.	2.9	51
32	Monte Carlo dosimetric characterization of a new high dose rate Yb brachytherapy source and independent verification using a multipoint plastic scintillator detector. Medical Physics, 2020, 47, 4563-4573.	3.0	1
33	Evaluating the impact of real-time multicriteria optimizers integrated with interactive plan navigation tools for HDR brachytherapy. Brachytherapy, 2020, 19, 607-617.	0.5	10
34	Dose to the bladder neck is not correlated with urinary toxicity in patients with prostate cancer treated with HDR brachytherapy boost. Brachytherapy, 2020, 19, 584-588.	0.5	2
35	Future directions of in vivo dosimetry for external beam radiotherapy and brachytherapy. Physics and Imaging in Radiation Oncology, 2020, 16, 18-19.	2.9	9
36	Light-Generating CdSe/CdS Colloidal Quantum Dot-Doped Plastic Optical Fibers. ACS Applied Nano Materials, 2020, 3, 6478-6488.	5.0	2

#	Article	IF	CITATIONS
37	Colloidal Quantum Dot-Doped Optical Fibers for Scintillation Dosimetry. IEEE Transactions on Nuclear Science, 2020, 67, 1040-1044.	2.0	3
38	Dosimetric performance of a multipoint plastic scintillator dosimeter as a tool for realâ€ŧime source tracking in high dose rate Ir brachytherapy. Medical Physics, 2020, 47, 4477-4490.	3.0	20
39	OC-1044: Catheter Reconstruction Limits of an Afterloader With EMT Capabilities. Radiotherapy and Oncology, 2020, 152, S1095-S1096.	0.6	0
40	Characterization of a plastic scintillating detector for the Small Animal Radiation Research Platform (<scp>SARRP</scp>). Medical Physics, 2019, 46, 394-404.	3.0	15
41	A High-Performance Dosimetry System for In Vivo HDR Brachytherapy: Real Time Source Tracking and Dose Measurements. Brachytherapy, 2019, 18, S19-S20.	0.5	1
42	Preclinical dose verification using a 3D printed mouse phantom for radiobiology experiments. Medical Physics, 2019, 46, 5294-5303.	3.0	6
43	The association of intraprostatic calcifications and dosimetry parameters with biochemical control after permanent prostate implant. Brachytherapy, 2019, 18, 787-792.	0.5	5
44	ULTRA-HYPO (UHF) Compared to Moderate-HYPO (MHF) Fractionated Prostate IGRT with HDR Brachytherapy BOOST: LONG TERM Toxicity, Acceptability and Efficiency of Delivery. International Journal of Radiation Oncology Biology Physics, 2019, 105, E293-E294.	0.8	0
45	Commissioning and Clinical Use of the Uronav Therapy System with the Electromagnetic Tracking Technology for Intra-Op US Guided Prostate HDR. Brachytherapy, 2019, 18, S64-S65.	0.5	1
46	Investigation of the quinine sulfate dihydrate spectral properties and its effects on Cherenkov dosimetry. Physics in Medicine and Biology, 2019, 64, 155019.	3.0	9
47	Dosimetric properties of colloidal quantum dot-based systems for scintillation dosimetry. Physics in Medicine and Biology, 2019, 64, 095027.	3.0	8
48	A GPU-based multi-criteria optimization algorithm for HDR brachytherapy. Physics in Medicine and Biology, 2019, 64, 105005.	3.0	25
49	Optimization of a multipoint plastic scintillator dosimeter for high dose rate brachytherapy. Medical Physics, 2019, 46, 2412-2421.	3.0	24
50	Technical Note: Identification of an optimal electromagnetic sensor for <i>inÂvivo</i> electromagneticâ€ŧracked scintillation dosimeter for HDR brachytherapy. Medical Physics, 2019, 46, 2031-2036.	3.0	9
51	A stochastic frontier analysis for enhanced treatment quality of high-dose-rate brachytherapy plans. Physics in Medicine and Biology, 2019, 64, 065012.	3.0	3
52	90 Ultra-Hypo (UHF) Compared to Moderate-Hypo (MHF) Fractionated Prostate IGRT with HDR Brachytherapy Boost: Long Term Toxicity, Acceptability and Efficiency of Delivery. Radiotherapy and Oncology, 2019, 139, S40-S41.	0.6	0
53	Benchmarking a novel inorganic scintillation detector for applications in radiation therapy. Physica Medica, 2019, 68, 124-131.	0.7	13
54	Towards an Ultra-Fast GPU-Based Multi-Criteria Optimization Algorithm for HDR Brachytherapy. Brachytherapy, 2019, 18, S23-S24.	0.5	1

#	Article	IF	CITATIONS
55	10 The Impact of Dose to Bladder Neck on Urinary Toxicity in Patients Treated with HDR Brachytherapy Boost for Prostate Cancer. Radiotherapy and Oncology, 2019, 139, S7-S8.	0.6	0
56	Feasibility of Intraprostatic Prostate Cancer Imaging with FCH-PET/CT for Preoperative Planning of Image-Guided HDR Brachytherapy. Brachytherapy, 2019, 18, S72.	0.5	0
57	The Impact of Dose to Bladder Neck on Urinary Toxicity in Patients Treated with HDR Brachytherapy Boost for Prostate Cancer. Brachytherapy, 2019, 18, S65.	0.5	0
58	Intratumoral Injection of Low-Energy Photon-Emitting Gold Nanoparticles: A Microdosimetric Monte Carlo-Based Model. ACS Nano, 2018, 12, 2482-2497.	14.6	20
59	EMâ€enhanced USâ€based seed detection for prostate brachytherapy. Medical Physics, 2018, 45, 2357-2368.	3.0	8
60	Technical Note: On <scp>EM</scp> reconstruction of a multi channel shielded applicator for cervical cancer brachytherapy: A feasibility study Medical Physics, 2018, 45, 1673-1676.	3.0	8
61	Does Seed Migration Increase the Risk of Second Malignancies in Prostate Cancer Patients Treated With Iodine-125 Loose Seeds Brachytherapy?. International Journal of Radiation Oncology Biology Physics, 2018, 100, 1190-1194.	0.8	5
62	<scp>COMP</scp> report: <scp>CPQR</scp> technical quality control guidelines for lowâ€doseâ€rate permanent seed brachytherapy. Journal of Applied Clinical Medical Physics, 2018, 19, 13-18.	1.9	0
63	Real-time electromagnetic tracking–based treatment platform for high-dose-rate prostate brachytherapy: Clinical workflows and end-to-end validation. Brachytherapy, 2018, 17, 103-110.	0.5	33
64	A multi-criteria optimization approach for HDR prostate brachytherapy: I. Pareto surface approximation. Physics in Medicine and Biology, 2018, 63, 205004.	3.0	9
65	A multi-criteria optimization approach for HDR prostate brachytherapy: II. Benchmark against clinical plans. Physics in Medicine and Biology, 2018, 63, 205005.	3.0	8
66	The Clinical Efficiency and Learning Curve of Ultrasound (us)-Based Planning in High Dose Rate (hdr) Prostate Brachytherapy. Brachytherapy, 2018, 17, S34-S35.	0.5	4
67	Massively Parallel Implementation of IPSA on GPU Architecture for Multi-Criteria Optimization. Brachytherapy, 2018, 17, S87.	0.5	0
68	The Impact of Intraprostatic Calcifications on Biochemical Control after Permanent Prostate Implant. Brachytherapy, 2018, 17, S20.	0.5	0
69	Characterization of a binary system composed of luminescent quantum dots for liquid scintillation. Physics in Medicine and Biology, 2018, 63, 175012.	3.0	8
70	A theoretical framework to predict the most likely ion path in particle imaging. Physics in Medicine and Biology, 2017, 62, 1777-1790.	3.0	42
71	Use of 3D transabdominal ultrasound imaging for treatment planning in cervical cancer brachytherapy: Comparison to magnetic resonance and computed tomography. Brachytherapy, 2017, 16, 847-854.	0.5	12
72	Coupling Iâ€125 permanent implant prostate brachytherapy Monte Carlo dose calculations with radiobiological models. Medical Physics, 2017, 44, 4329-4340.	3.0	6

#	Article	IF	CITATIONS
73	Multicenter Evaluation of Biochemical Relapse–Free Survival Outcomes for Intraoperatively Planned Prostate Brachytherapy Using an Automated Delivery System. International Journal of Radiation Oncology Biology Physics, 2017, 99, 895-903.	0.8	8
74	Validation of plastic scintillation detectors for applications in low-dose-rate brachytherapy. Brachytherapy, 2017, 16, 903-909.	0.5	10
75	Abstract ID: 184 OpenDNA: An OpenCL-based GPU Monte Carlo simulation code for microdosimetry. Physica Medica, 2017, 42, 39-40.	0.7	0
76	Abstract ID: 186 OpenTRAK: An OpenCL-based GPU Monte Carlo simulation code for Brachytherapy dose calculation. Physica Medica, 2017, 42, 40.	0.7	0
77	Abstract ID: 246 Advanced dose calculations for clinical brachytherapy. Physica Medica, 2017, 42, 46.	0.7	0
78	Does Delay From Prostate Cancer Diagnosis to Treatment With Permanent Seed Implantation Increase the Risk of Disease Recurrence in Men With Clinically Localized Prostate Cancer?. International Journal of Radiation Oncology Biology Physics, 2017, 99, E271-E272.	0.8	1
79	A generic TGâ€186 shielded applicator for commissioning modelâ€based dose calculation algorithms for highâ€doseâ€rate ¹⁹² Ir brachytherapy. Medical Physics, 2017, 44, 5961-5976.	3.0	34
80	On EM Reconstruction of a Mutli Channel Shielded DMBT Tandem Applicator for Cervical Cancer Brachytherapy: A Feasibility Study. Brachytherapy, 2017, 16, S86-S87.	0.5	0
81	Integrating Direction Modulated Brachytherapy (DMBT) Tandem Applicator into a Brachytherapy TPS. Brachytherapy, 2017, 16, S20.	0.5	0
82	Effect of Different Hypofractionated Regimens Combination on Clinical Outcomes in Prostate Cancer Patients Treated with High Dose-Rate Brachytherapy Boost. Brachytherapy, 2017, 16, S54-S55.	0.5	0
83	Extension of the Fermi–Eyges most-likely path in heterogeneous medium with prior knowledge information. Physics in Medicine and Biology, 2017, 62, 9207-9219.	3.0	14
84	High-dose-rate brachytherapy boost for prostate cancer treatment: Different combinations of hypofractionated regimens and clinical outcomes. Radiotherapy and Oncology, 2017, 124, 49-55.	0.6	31
85	Pre-treatment patient-specific stopping power by combining list-mode proton radiography and x-ray CT. Physics in Medicine and Biology, 2017, 62, 6836-6852.	3.0	31
86	Large-scale Retrospective Monte Carlo Dosimetric Study for Permanent Implant Prostate Brachytherapy. International Journal of Radiation Oncology Biology Physics, 2017, 97, 606-615.	0.8	18
87	Preliminary investigation of a luminescent colloidal quantum dots-based liquid scintillator. Journal of Physics: Conference Series, 2017, 847, 012043.	0.4	1
88	Advances in Radiotherapy for Prostate Cancer Treatment. Prostate Cancer, 2016, 2016, 1-2.	0.6	1
89	Robust shell passivation of CdSe colloidal quantum dots to stabilize radioluminescence emission. AIP Advances, 2016, 6, 105011.	1.3	8
90	Realâ€ŧime electromagnetic seed drop detection for permanent implants brachytherapy: Technology overview and performance assessment. Medical Physics, 2016, 43, 6217-6225.	3.0	4

#	Article	IF	CITATIONS
91	Does prostate volume has an impact on biochemical failure in patients with localized prostate cancer treated with HDR boost?. Radiotherapy and Oncology, 2016, 121, 304-309.	0.6	5
92	Real-Time EM-Tracking Based Treatment Platform for High Dose Rate Prostate Brachytherapy: End-to-End Validation and Clinical Workflows. Brachytherapy, 2016, 15, S38-S39.	0.5	0
93	Use of 3D-Ultrasound for Cervical Cancer Brachytherapy: An Imaging Technique to Improve Treatment Planning. Brachytherapy, 2016, 15, S92-S93.	0.5	2
94	Characterization of Electromagnetic versus Manual 3DUS-Based Catheter Tip Localization Errors in High Dose Rate Brachytherapy Procedures. Brachytherapy, 2016, 15, S194-S195.	0.5	0
95	Monte Carlo calculation of the dose perturbations in a dual-source HDR/PDR afterloader treatment unit. Brachytherapy, 2016, 15, 524-530.	0.5	1
96	A Modified TG-43 Dose Calculation Formalism for Direction Modulation Brachytherapy (DMBT) Tandem Applicator. Brachytherapy, 2016, 15, S32-S33.	0.5	0
97	A Monte-Carlo Study of Cellular Dosimetry of Radioactive Gold-Palladium Nanoparticles Based on the Transmission Electron Microscopy Images. Brachytherapy, 2016, 15, S40-S41.	0.5	0
98	Clinical Outcomes in Patients Treated with Selective HDR Image-Guided Boost to Dominant Intra-Prostatic Lesion. Brachytherapy, 2016, 15, S52.	0.5	1
99	Monte Carlo Dose Calculations for Permanent Prostate Brachytherapy: Calcification Modelling Schemes and Sensitivity to Tissue Compositions. Brachytherapy, 2016, 15, S33-S34.	0.5	0
100	A maximum likelihood method for high resolution proton radiography/proton CT. Physics in Medicine and Biology, 2016, 61, 8232-8248.	3.0	25
101	A systematic characterization of the low-energy photon response of plastic scintillation detectors. Physics in Medicine and Biology, 2016, 61, 5569-5586.	3.0	28
102	Image-guided high-dose-rate brachytherapy boost to the dominant intraprostatic lesion using multiparametric magnetic resonance imaging including spectroscopy: Results of a prospective study. Brachytherapy, 2016, 15, 746-751.	0.5	19
103	Review of plastic and liquid scintillation dosimetry for photon, electron, and proton therapy. Physics in Medicine and Biology, 2016, 61, R305-R343.	3.0	114
104	Comparison of dose and catheter optimization algorithms in prostate high-dose-rate brachytherapy. Brachytherapy, 2016, 15, 102-111.	0.5	27
105	ÄŒerenkov and its solutions. Imaging in Medical Diagnosis and Therapy, 2016, , 73-83.	0.0	2
106	Scintillation of organic materials. Imaging in Medical Diagnosis and Therapy, 2016, , 3-20.	0.0	0
107	Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 01: On the use of proton radiography to reduce beam range uncertainties and improve patient positioning accuracy in proton therapy. Medical Physics, 2016, 43, 4955-4955.	3.0	0
108	Image-Guided High-Dose-Rate (HDR) Boost Localization Using MRI/MR Spectroscopy: A Correlation Study with Biopsy. Cureus, 2016, 8, e795.	0.5	1

#	Article	IF	CITATIONS
109	Validation of a novel robotâ€assisted 3DUS system for realâ€ŧime planning and guidance of breast interstitial HDR brachytherapy. Medical Physics, 2015, 42, 6830-6839.	3.0	5
110	Evaluation of an electron Monte Carlo dose calculation algorithm for treatment planning. Journal of Applied Clinical Medical Physics, 2015, 16, 60-79.	1.9	17
111	Systematic evaluation of photodetector performance for plastic scintillation dosimetry. Medical Physics, 2015, 42, 6211-6220.	3.0	17
112	Validation of the Oncentra Brachy Advanced Collapsed cone Engine for a commercial 1921r source using heterogeneous geometries. Brachytherapy, 2015, 14, 939-952.	0.5	43
113	Characterization of a fiber-taper charge-coupled device system for plastic scintillation dosimetry and comparison with the traditional lens system. Radiation Measurements, 2015, 73, 60-68.	1.4	1
114	Developing a phenomenological model of the proton trajectory within a heterogeneous medium required for proton imaging. Physics in Medicine and Biology, 2015, 60, 5071-5082.	3.0	44
115	Performance and suitability assessment of a real-time 3D electromagnetic needle tracking system for interstitial brachytherapy. Journal of Contemporary Brachytherapy, 2015, 4, 280-289.	0.9	32
116	A generic high-dose rate ¹⁹² Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism. Medical Physics, 2015, 42, 3048-3062.	3.0	64
117	Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy. Physics in Medicine and Biology, 2015, 60, 4973-4986.	3.0	15
118	Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system. Medical Physics, 2015, 42, 1227-1232.	3.0	55
119	Special section: Selected papers from the Fifth International Workshop on Monte Carlo Techniques in Medical Physics. Physics in Medicine and Biology, 2015, 60, 4947-4950.	3.0	Ο
120	Towards real-time 3D ultrasound planning and personalized 3D printing for breast HDR brachytherapy treatment. Radiotherapy and Oncology, 2015, 114, 335-338.	0.6	26
121	The collapsed cone algorithm for192Ir dosimetry using phantom-size adaptive multiple-scatter point kernels. Physics in Medicine and Biology, 2015, 60, 5313-5323.	3.0	10
122	Calcifications in low-dose rate prostate seed brachytherapy treatment: Post-planning dosimetry and predictive factors. Radiotherapy and Oncology, 2015, 114, 339-344.	0.6	18
123	Use of 3D-Ultrasound Imaging in Cervical Cancer Brachytherapy: Preliminary Report. Brachytherapy, 2015, 14, S55.	0.5	Ο
124	Comparison of TG-43 and TG-186 in breast irradiation using a low energy electronic brachytherapy source. Medical Physics, 2014, 41, 061701.	3.0	29
125	Novel, full 3D scintillation dosimetry using a static plenoptic camera. Medical Physics, 2014, 41, 082101.	3.0	38
126	AAPM and GECâ€ESTRO guidelines for imageâ€guided robotic brachytherapy: Report of Task Group 192. Medical Physics, 2014, 41, 101501.	3.0	78

#	Article	IF	CITATIONS
127	Quantifying the effect of seed orientation in postplanning dosimetry of lowâ€doseâ€rate prostate brachytherapy. Medical Physics, 2014, 41, 101704.	3.0	13
128	The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions. Physics in Medicine and Biology, 2014, 59, 5921-5935.	3.0	7
129	On the Sensitivity of $\hat{I} \pm \hat{I}^2$ Prediction to Dose Calculation Methodology in Prostate Brachytherapy. International Journal of Radiation Oncology Biology Physics, 2014, 88, 345-350.	0.8	6
130	Impact of Technology and Learning Curve on Migration and Seed Loss in Permanent Prostate Implants. Brachytherapy, 2014, 13, S70-S71.	0.5	0
131	Establishing Universal Test Cases for Benchmarking Model-Based Dose Calculations beyond TG-43. Brachytherapy, 2014, 13, S50.	0.5	1
132	A Novel Approach for Real-Time, Personalized Breast HDR Brachytherapy Treatment Using 3D Printing Technology. Brachytherapy, 2014, 13, S18.	0.5	5
133	Dose perturbation due to catheter materials in high-dose-rate interstitial 1921r brachytherapy. Brachytherapy, 2014, 13, 627-631.	0.5	10
134	Monte Carlo dosimetry of high dose rate gynecologic interstitial brachytherapy. Radiotherapy and Oncology, 2013, 109, 425-429.	0.6	9
135	Water-dispersable colloidal quantum dots for the detection of ionizing radiation. Chemical Communications, 2013, 49, 11629.	4.1	20
136	A simplified analytical dose calculation algorithm accounting for tissue heterogeneity for low-energy brachytherapy sources. Physics in Medicine and Biology, 2013, 58, 6299-6315.	3.0	13
137	Acute and Late Toxicity in Patients Treated with Selective High-Dose-Rate Image-Guided Boost to Dominant Intraprostatic Lesion. Brachytherapy, 2013, 12, S33-S34.	0.5	0
138	A Generic High-Dose-Rate 192Ir Source Model for Model-Based Dose Calculation Methods in Brachytherapy Beyond the TG-43 Formalism. Brachytherapy, 2013, 12, S62-S63.	0.5	2
139	Dosimetric Impact of Tissue Heterogeneity in Low Energy Accelerated Partial Breast Irradiation: A Monte Carlo Study. Brachytherapy, 2013, 12, S46.	0.5	0
140	An Adaptive Point Kernel Approach for Improved Skin Dose Determination Using a Collapsed Cone Superposition Algorithm. Brachytherapy, 2013, 12, S12.	0.5	2
141	3D tomodosimetry using long scintillating fibers: A feasibility study. Medical Physics, 2013, 40, 101703.	3.0	10
142	Adaptation of the CVT algorithm for catheter optimization in high dose rate brachytherapy. Medical Physics, 2013, 40, 111724.	3.0	18
143	On the nature of the light produced within PMMA optical light guides in scintillation fiber-optic dosimetry. Physics in Medicine and Biology, 2013, 58, 2073-2084.	3.0	86
144	Performance assessment of a 2D array of plastic scintillation detectors for IMRT quality assurance. Physics in Medicine and Biology, 2013, 58, 4439-4454.	3.0	15

#	Article	IF	CITATIONS
145	On the use of a singleâ€fiber multipoint plastic scintillation detector for ¹⁹² Ir highâ€doseâ€rate brachytherapy. Medical Physics, 2013, 40, 062101.	3.0	37
146	Current status of scintillation dosimetry for megavoltage beams. Journal of Physics: Conference Series, 2013, 444, 012013.	0.4	36
147	3D tomodosimetry using scintillating fibers: proof-of-concept. Journal of Physics: Conference Series, 2013, 444, 012023.	0.4	1
148	A comparative study of small field total scatter factors and dose profiles using plastic scintillation detectors and other stereotactic dosimeters: The case of the CyberKnife. Medical Physics, 2013, 40, 011719.	3.0	78
149	TU-E-116-01: Clinical Implementation for Advanced Brachytherapy Dose Calculation Algorithms Beyond the TG-43 Formalism. Medical Physics, 2013, 40, 450-450.	3.0	1
150	TU-C-108-08: Characterization of a Fiber-Taper CCD Photo-Counting System for Plastic Scintillation Dosimetry and Comparison to the Traditional Lens System. Medical Physics, 2013, 40, 432-432.	3.0	0
151	Dose to tissue medium or water cavities as surrogate for the dose to cell nuclei at brachytherapy photon energies. Physics in Medicine and Biology, 2012, 57, 4489-4500.	3.0	21
152	Sub-second high dose rate brachytherapy Monte Carlo dose calculations with <tt>bGPUMCD</tt> . Medical Physics, 2012, 39, 4559-4567.	3.0	20
153	Development of a 2D scintillating fiber detector for proton radiography. , 2012, , .		Ο
154	Report of the Task Group 186 on modelâ€based dose calculation methods in brachytherapy beyond the TGâ€43 formalism: Current status and recommendations for clinical implementation. Medical Physics, 2012, 39, 6208-6236.	3.0	391
155	Exploring ⁵⁷ Co as a new isotope for brachytherapy applications. Medical Physics, 2012, 39, 2342-2345.	3.0	13
156	A mathematical formalism for hyperspectral, multipoint plastic scintillation detectors. Physics in Medicine and Biology, 2012, 57, 7133-7145.	3.0	42
157	Development of a novel multi-point plastic scintillation detector with a single optical transmission line for radiation dose measurement. Physics in Medicine and Biology, 2012, 57, 7147-7159.	3.0	38
158	Comment on â€~Plastic scintillation dosimetry: comparison of three solutions for the Cerenkov challenge'. Physics in Medicine and Biology, 2012, 57, 3661-3665.	3.0	8
159	Medical physics staffing for radiation oncology: a decade of experience in Ontario, Canada. Journal of Applied Clinical Medical Physics, 2012, 13, 93-110.	1.9	24
160	Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range. Medical Physics, 2012, 39, 5308-5316.	3.0	45
161	In-phantom dose verification of prostate IMRT and VMAT deliveries using plastic scintillation detectors. Radiation Measurements, 2012, 47, 921-929.	1.4	21
162	Layered mass geometry: a novel technique to overlay seeds and applicators onto patient geometry in Geant4 brachytherapy simulations. Physics in Medicine and Biology, 2012, 57, 6269-6277.	3.0	32

#	Article	IF	CITATIONS
163	ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy. Physics in Medicine and Biology, 2012, 57, 3273-3280.	3.0	58
164	Consequences of dose heterogeneity on the biological efficiency of103Pd permanent breast seed implants. Physics in Medicine and Biology, 2012, 57, 809-823.	3.0	7
165	High resolution 2D dose measurement device based on a few long scintillating fibers and tomographic	3.0	18
166	Special section: Selected papers from the Fourth International Workshop on Recent Advances in Monte Carlo Techniques for Radiation Therapy. Physics in Medicine and Biology, 2012, 57, .	3.0	3
167	TU-A-BRB-06: Characterization of a Commercial Photodiode Based Plastic Scintillation Detector Prototype. Medical Physics, 2012, 39, 3886-3886.	3.0	0
168	WEâ€Gâ€BRBâ€04: BEST IN PHYSICS (THERAPY) ―A Novel Multiâ€Point Plastic Scintillation Detector for in Vivo Dosimetry and Quality Assurance in Radiation Therapy. Medical Physics, 2012, 39, 3967-3967.	3.0	1
169	An algorithm for efficient metal artifact reductions in permanent seed implants. Medical Physics, 2011, 38, 47-56.	3.0	37
170	Simulation study on potential accuracy gains from dual energy CT tissue segmentation for low-energy brachytherapy Monte Carlo dose calculations. Physics in Medicine and Biology, 2011, 56, 6257-6278.	3.0	57
171	Tissue modeling schemes in low energy breast brachytherapy. Physics in Medicine and Biology, 2011, 56, 7045-7060.	3.0	13
172	Extracting atomic numbers and electron densities from a dual source dual energy CT scanner: Experiments and a simulation model. Radiotherapy and Oncology, 2011, 100, 375-379.	0.6	82
173	Functional avoidance of lung in plan optimization with an aperture-based inverse planning system. Radiotherapy and Oncology, 2011, 100, 390-395.	0.6	27
174	Patient-Specific Monte Carlo-Based Dose-Kernel Approach for Inverse Planning in Afterloading Brachytherapy. International Journal of Radiation Oncology Biology Physics, 2011, 81, 1582-1589.	0.8	7
175	Technical Note: Determining regions of interest for CCD cameraâ€based fiber optic luminescence dosimetry by examining signalâ€toâ€noise ratio. Medical Physics, 2011, 38, 1374-1377.	3.0	7
176	3D heterogeneous dose distributions for total body irradiation patients. Journal of Applied Clinical Medical Physics, 2011, 12, 205-214.	1.9	11
177	Modeling a Hypothetical ¹⁷⁰ Tm Source for Brachytherapy Applications. Medical Physics, 2011, 38, 5307-5310.	3.0	13
178	Realâ€ŧime verification of multileaf collimatorâ€driven radiotherapy using a novel optical attenuationâ€based fluence monitor. Medical Physics, 2011, 38, 1459-1467.	3.0	24
179	Extraction of depth-dependent perturbation factors for silicon diodes using a plastic scintillation detector. Medical Physics, 2011, 38, 5441-5447.	3.0	7
180	A new waterâ€equivalent 2D plastic scintillation detectors array for the dosimetry of megavoltage energy photon beams in radiation therapy. Medical Physics, 2011, 38, 6763-6774.	3.0	59

#	Article	IF	CITATIONS
181	Spectral method for the correction of the Cerenkov light effect in plastic scintillation detectors: A comparison study of calibration procedures and validation in Cerenkov lightâ€dominated situations. Medical Physics, 2011, 38, 2140-2150.	3.0	116
182	Different Tissue Modeling Schemes in Post-implant Assessment ofÂBreast LDR Brachytherapy. Brachytherapy, 2011, 10, S32.	0.5	1
183	Dosimetric performance and array assessment of plastic scintillation detectors for stereotactic radiosurgery quality assurance. Medical Physics, 2011, 39, 429-436.	3.0	60
184	Technical Note: Removing the stem effect when performing Irâ€192 HDR brachytherapy <i>in vivo</i> dosimetry using plastic scintillation detectors: A relevant and necessary step. Medical Physics, 2011, 38, 2176-2179.	3.0	42
185	The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources. Medical Physics, 2011, 38, 1526-1533.	3.0	39
186	Accurate calibration of a polymer gel dosimeter with a plastic scintillation detector. Medical Physics, 2011, 38, 2754-2761.	3.0	5
187	A phantom study of an <i>in vivo</i> dosimetry system using plastic scintillation detectors for real-time verification of ¹⁹² Ir HDR brachytherapy. Medical Physics, 2011, 38, 2542-2551.	3.0	76
188	An opposite view data replacement approach for reducing artifacts due to metallic dental objects. Medical Physics, 2011, 38, 2275-2281.	3.0	22
189	TU-E-BRB-11: Using CAD Description for Accurate Modelling in Radiation Therapy Advanced Dose Calculation. Medical Physics, 2011, 38, 3769-3769.	3.0	0
190	Improvement in the accuracy of polymer gel dosimeters using scintillating fibers. Journal of Physics: Conference Series, 2010, 250, 012076.	0.4	2
191	Simulation of the precision limits of plastic scintillation detectors using optimal component selection. Medical Physics, 2010, 37, 412-418.	3.0	18
192	Extraction of depthâ€dependent perturbation factors for parallelâ€plate chambers in electron beams using a plastic scintillation detector. Medical Physics, 2010, 37, 4331-4342.	3.0	36
193	A More Efficient, Radiation-Free Alternative to Systematic Chest X-Ray for the Detection of Embolized Seeds to the Lung. International Journal of Radiation Oncology Biology Physics, 2010, 78, 1052-1056.	0.8	4
194	Investigation of geometric distortions on magnetic resonance and cone beam computed tomography images used for planning and verification ofAhigh–dose rate brachytherapy cervical cancer treatment. Brachytherapy, 2010, 9, 266-273.	0.5	9
195	Dose Escalation to the Dominant Intraprostatic Lesion Defined by Sextant Biopsy in a Permanent Prostate I-125 Implant: A Prospective Comparative Toxicity Analysis. International Journal of Radiation Oncology Biology Physics, 2010, 77, 153-159.	0.8	29
196	Toward a Real-Time In Vivo Dosimetry System Using Plastic Scintillation Detectors. International Journal of Radiation Oncology Biology Physics, 2010, 78, 280-287.	0.8	74
197	Laboratory Characterization and Influence of Mineralogy and Grading on the Performance of Treated and Untreated Granular Materials Used as Surface Pavements in Unpaved Road. Advances in Civil Engineering, 2010, 2010, 1-10.	0.7	35
198	Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition. Medical Physics, 2010, 37, 5188-5198.	3.0	77

#	Article	IF	CITATIONS
199	Toward 3D dosimetry of intensity modulated radiation therapy treatments with plastic scintillation detectors. Journal of Physics: Conference Series, 2010, 250, 012006.	0.4	15
200	The Dimensional Synthesis of the Linear Delta Robot for a Force-Feedback Device. , 2010, , .		2
201	Influence of breast composition and interseed attenuation in dose calculations for post-implant assessment of permanent breast ¹⁰³ Pd seed implant. Physics in Medicine and Biology, 2010, 55, 4547-4561.	3.0	36
202	Enhancements to commissioning techniques and quality assurance of brachytherapy treatment 2645-2658.	3.0	55
203	Modern Principles of Brachytherapy Physics. , 2010, , 224-244.		3
204	Optimization of photon beam energy in apertureâ€based inverse planning. Journal of Applied Clinical Medical Physics, 2009, 10, 36-54.	1.9	12
205	Centrality dependence of the thermal excitation-energy deposition in 8–15 GeV/chadron-Au reactions. Physical Review C, 2009, 79, .	2.9	5
206	Commissioning and evaluation of an extended SSD photon model for <scp>PINNACLE</scp> ³ : An application to total body irradiation. Medical Physics, 2009, 36, 3844-3855.	3.0	18
207	Monte Carlo study of LDR seed dosimetry with an application in a clinical brachytherapy breast implant. Medical Physics, 2009, 36, 1848-1858.	3.0	31
208	A design methodology using signalâ€toâ€noise ratio for plastic scintillation detectors design and performance optimization. Medical Physics, 2009, 36, 5214-5220.	3.0	23
209	An Eight-Year Experience of HDR Brachytherapy Boost for Localized Prostate Cancer: Biopsy and PSA Outcome. International Journal of Radiation Oncology Biology Physics, 2009, 73, 679-684.	0.8	77
210	The evolution of brachytherapy treatment planning. Medical Physics, 2009, 36, 2136-2153.	3.0	157
211	Dose escalation in the radiotherapy of non-small-cell lung cancer with aperture-based intensity modulation and photon beam energy optimization for non-preselected patients. Radiotherapy and Oncology, 2009, 91, 342-348.	0.6	10
212	Correction of megavoltage coneâ€beam CT images of the pelvic region based on phantom measurements for dose calculation purposes. Journal of Applied Clinical Medical Physics, 2009, 10, 33-42.	1.9	12
213	Threeâ€dimensional ultrasound system for guided breast brachytherapy. Medical Physics, 2009, 36, 5099-5106.	3.0	10
214	Individualized Margins in 3D Conformal Radiotherapy Planning for Lung Cancer: Analysis of Physiological Movements and Their Dosimetric Impacts. Medical Dosimetry, 2008, 33, 48-54.	0.9	1
215	Catheters optimization within inverse planning simulated annealing for high-dose-rate brachytherapy. Brachytherapy, 2008, 7, 168.	0.5	4
216	A novel method for inverse planning using Monte Carlo dose calculations in afterloading brachytherapy. Brachytherapy, 2008, 7, 172-173.	0.5	0

#	Article	IF	CITATIONS
217	Clinical Outcome of Adjuvant Treatment of Endometrial Cancer Using Aperture-Based Intensity-Modulated Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2008, 71, 1343-1350.	0.8	24
218	Prostate Postbrachytherapy Seed Distribution: Comparison of High-Resolution, Contrast-Enhanced, T1- and T2-Weighted Endorectal Magnetic Resonance Imaging Versus Computed Tomography: Initial Experience: In Regard to Bloch et al. (Int J Radiat Oncol Biol Phys 2007;69:70–78). International Journal of Radiation Oncology Biology Physics, 2008, 71, 1289.	0.8	1
219	Tissue segmentation in Monte Carlo treatment planning: A simulation study using dual-energy CT images. Radiotherapy and Oncology, 2008, 86, 93-98.	0.6	56
220	Attenuator design for organs at risk in total body irradiation using a translation technique. Medical Physics, 2008, 35, 1663-1669.	3.0	9
221	Recent developments in scintillating fiber detection systems in radiation therapy. Proceedings of SPIE, 2008, , .	0.8	0
222	Monte Carlo dose calculations for phantoms with hip prostheses. Journal of Physics: Conference Series, 2008, 102, 012001.	0.4	3
223	Characterizing the response of miniature scintillation detectors when irradiated with proton beams. Physics in Medicine and Biology, 2008, 53, 1865-1876.	3.0	55
224	Relationship between isotope half-life and prostatic edema for optimal prostate dose coverage in permanent seed implants. Medical Physics, 2008, 35, 1970-1977.	3.0	9
225	Clinical prototype of a plastic water-equivalent scintillating fiber dosimeter array for QA	3.0	64
226	A Monte Carlo study on the effect of seed design on the interseed attenuation in permanent prostate implants. Medical Physics, 2008, 35, 3671-3681.	3.0	34
227	Automatic contour retrieval in annotated trus prostate images. , 2008, , .		1
228	Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations. Physics in Medicine and Biology, 2008, 53, 2439-2456.	3.0	171
229	Monte Carlo iodine brachytherapy dosimetry: study for a clinical application. Journal of Physics: Conference Series, 2008, 102, 012011.	0.4	2
230	Correction of megavoltage coneâ€beam CT images for dose calculation in the head and neck region. Medical Physics, 2008, 35, 900-907.	3.0	20
231	Correction of CT artifacts and its influence on Monte Carlo dose calculations. Medical Physics, 2007, 34, 2119-2132.	3.0	112
232	Water-equivalent dosimeter array for small-field external beam radiotherapy. Medical Physics, 2007, 34, 1583-1592.	3.0	85
233	Bypassing the learning curve in permanent seed implants using state-of-the-art technology. International Journal of Radiation Oncology Biology Physics, 2007, 67, 71-77.	0.8	32
234	Permanent prostate implant using high activity seeds and inverse planning with fast simulated annealing algorithm: A 12-year Canadian experience. International Journal of Radiation Oncology Biology Physics, 2007, 67, 334-341.	0.8	52

#	Article	IF	CITATIONS
235	Postoperative Irradiation of Gynecologic Malignancies: Improving Treatment Delivery Using Aperture-Based Intensity-Modulated Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2007, 68, 601-611.	0.8	9
236	Postimplant Dosimetry Using a Monte Carlo Dose Calculation Engine: A New Clinical Standard. International Journal of Radiation Oncology Biology Physics, 2007, 68, 1190-1198.	0.8	69
237	Impact of intraoperative treatment planning on clinical outcomes in I-125 prostate brachytherapy. Brachytherapy, 2007, 6, 107.	0.5	0
238	A novel approach for reducing metal artifacts due to metallic dental implants. , 2006, , .		11
239	Multiobjective optimization with a modified simulated annealing algorithm for external beam radiotherapy treatment planning. Medical Physics, 2006, 33, 4718-4729.	3.0	21
240	Octree indexing of DICOM images for voxel number reduction and improvement of Monte Carlo simulation computing efficiency. Medical Physics, 2006, 33, 2819-2831.	3.0	14
241	Light-ion-induced multifragmentation: The ISiS project. Physics Reports, 2006, 434, 1-46.	25.6	36
242	Absolute calibration of polymer gel dosimeters using scintillating fibers. Journal of Physics: Conference Series, 2006, 56, 242-244.	0.4	3
243	Cooling dynamics in multi-fragmentation processes. Europhysics Letters, 2006, 74, 806-812.	2.0	10
244	Surface preparation and coupling in plastic scintillator dosimetry. Medical Physics, 2006, 33, 3519-3525.	3.0	26
245	Energy and integrated dose dependence of MOSFET dosimeter sensitivity for irradiation energies between 30kV and Co60. Medical Physics, 2006, 33, 3683-3689.	3.0	44
246	Impact of interseed attenuation and tissue composition for permanent prostate implants. Medical Physics, 2006, 33, 595-604.	3.0	62
247	Prostatic edema in 1125 permanent prostate implants: Dynamical dosimetry taking volume changes into account. Medical Physics, 2006, 33, 574-583.	3.0	22
248	An adaptive approach to metal artifact reduction in helical computed tomography for radiation therapy treatment planning: Experimental and clinical studies. International Journal of Radiation Oncology Biology Physics, 2005, 62, 1224-1231.	0.8	142
249	Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators. Medical Physics, 2005, 32, 2271-2278.	3.0	75
250	Neutron to proton ratios of quasiprojectile and midrapidity emission in theNi58+Ni58reaction at 52 MeV/nucleon. Physical Review C, 2005, 71, .	2.9	14
251	Comparison of midvelocity fragment formation with projectilelike decay. Physical Review C, 2005, 71, .	2.9	22
252	Anatomy-based inverse planning dose optimization in HDR prostate implant: A toxicity study. Radiotherapy and Oncology, 2005, 75, 318-324.	0.6	26

#	Article	IF	CITATIONS
253	Measurement accuracy and Cerenkov removal for high performance, high spatial resolution scintillation dosimetry. Medical Physics, 2005, 33, 128-135.	3.0	141
254	SU-FF-T-34: Inversely Planned Catheter Positions for High Dose Rate Brachytherapy of the Prostate. Medical Physics, 2005, 32, 1957-1957.	3.0	0
255	Sci-YIS Fri - 09: Small volume dosimetry with multiple scintillation probes. Medical Physics, 2005, 32, 2420-2420.	3.0	0
256	Sci-YIS Fri - 04: Clinical impact of seed density and prostate elemental composition on permanent seed implant dosimetry. Medical Physics, 2005, 32, 2419-2419.	3.0	0
257	Po-Poster - 20: Octree based compression method of DICOM images for voxel number reduction and faster Monte Carlo simulations. Medical Physics, 2005, 32, 2413-2413.	3.0	0
258	Isospin Diffusion and the Nuclear Symmetry Energy in Heavy Ion Reactions. Physical Review Letters, 2004, 92, 062701.	7.8	354
259	Effects of in-medium cross sections and optical potential on thermal-source formation inp+Au197reactions at $6.2\hat{a} \in 14.6$ GeV $\hat{a} \cdot c$. Physical Review C, 2004, 70, .	2.9	4
260	Sliding slice: A novel approach for high accuracy and automatic 3D localization of seeds from CT scans. Medical Physics, 2004, 32, 163-174.	3.0	10
261	Isotope yields from centralSn112,124+Sn112,124collisions: Dynamical emission?. Physical Review C, 2004, 69, .	2.9	64
262	Interplay of initial deformation and Coulomb proximity on nuclear decay. Physical Review C, 2004, 70, .	2.9	15
263	Automatic generation of anatomy-based MLC fields in aperture-based IMRT. Medical Physics, 2004, 31, 1539-1545.	3.0	14
264	The robustness of dose distributions to displacement and migration of 125I permanent seed implants over a wide range of seed number, activity, and designs. International Journal of Radiation Oncology Biology Physics, 2004, 58, 1298-1308.	0.8	44
265	Measurements of intrafraction motion and interfraction and intrafraction rotation of prostate by three-dimensional analysis of daily portal imaging with radiopaque markers. International Journal of Radiation Oncology Biology Physics, 2004, 60, 30-39.	0.8	149
266	Target proximity effect and dynamical projectile breakup at intermediate energies. Nuclear Physics A, 2004, 739, 15-29.	1.5	6
267	Validation ofGEANT4, an object-oriented Monte Carlo toolkit, for simulations in medical physics. Medical Physics, 2004, 31, 484-492.	3.0	137
268	Simultaneous optimization of beam orientations, wedge filters and field weights for inverse planning with anatomy-based MLC fields. Medical Physics, 2004, 31, 1546-1557.	3.0	18
269	Idealized line source configuration for permanent 125I prostate implants. Radiotherapy and Oncology, 2004, 72, 213-220.	0.6	8
270	Performing daily prostate targeting with a standard V-EPID and an automated radio-opaque marker detection algorithm. Radiotherapy and Oncology, 2004, 73, 61-64.	0.6	31

#	Article	IF	CITATIONS
271	Evaluation of an automatic needle-loading system. Journal of Applied Clinical Medical Physics, 2004, 5, 82-90.	1.9	2
272	Evaluation of an automatic needle-loading system. Journal of Applied Clinical Medical Physics, 2004, 5, 82-90.	1.9	0
273	Robustness and precision of an automatic marker detection algorithm for online prostate daily targeting using a standard V-EPID. Medical Physics, 2003, 30, 1825-1832.	3.0	44
274	Automatic post-implant needle reconstruction algorithm to characterize and improve implant robustness analyses. Medical Physics, 2003, 30, 2897-2903.	3.0	11
275	Excitation and decay of projectilelike fragments formed in dissipative peripheral collisions at intermediate energies. Physical Review C, 2003, 68, .	2.9	17
276	Tracking the phase-transition energy in the disassembly of hot nuclei. Physical Review C, 2002, 66, .	2.9	12
277	Origins of intermediate velocity particle production in heavy ion reactions. Physical Review C, 2002, 65, .	2.9	21
278	Caloric curve of8GeV/cÏ \in â^',pÂ ⁻ +197Aureactions. Physical Review C, 2002, 66, .	2.9	11
279	Breakup time scale studied in the 8GeV/cÏ€â^'+197Aureaction. Physical Review C, 2002, 65, .	2.9	19
280	Quasiclassical model of intermediate velocity particle production in asymmetric heavy ion reactions. Physical Review C, 2002, 65, .	2.9	25
281	Fragment production in noncentral collisions of intermediate-energy heavy ions. Physical Review C, 2002, 65, .	2.9	33
282	Fragment isospin as a probe of heavy-ion collisions. Physical Review C, 2002, 65, .	2.9	12
283	Setting Bounds on Critical Exponents with Event-by-Event Analysis of Nuclear Fragmentation Data. Acta Physica Hungarica A Heavy Ion Physics, 2002, 15, 417-426.	0.4	0
284	Fusion and decay in 24Mg+12C at ÂMeV. Nuclear Physics A, 2002, 700, 42-58.	1.5	2
285	Dosimetric impact of the variation of the prostate volume and shape between pretreatment planning and treatment procedure. International Journal of Radiation Oncology Biology Physics, 2002, 53, 215-221.	0.8	29
286	Early clinical experience with anatomy-based inverse planning dose optimization for high-dose-rate boost of the prostate. International Journal of Radiation Oncology Biology Physics, 2002, 54, 86-100.	0.8	67
287	Liquid to Vapor Phase Transition in Excited Nuclei. Physical Review Letters, 2002, 88, 042701.	7.8	151
288	Fission transient times from fission probabilities of neighboring isotopes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 518, 221-228.	4.1	16

#	Article	IF	CITATIONS
289	Isospin fractionation in nuclear fragmentation. Nuclear Physics A, 2001, 681, 299-308.	1.5	3
290	LASSA: a large area silicon strip array for isotopic identification of charged particles. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 473, 302-318.	1.6	78
291	Event-by-Event Analysis of Proton-Induced Nuclear Multifragmentation: Determination of the Phase Transition Universality Class in a System with Extreme Finite-Size Constraints. Physical Review Letters, 2001, 88, 022701.	7.8	58
292	Thermal excitation-energy deposition in 5–15GeV/chadron-induced reactions with197Au.II. Relation between excitation energy and reaction variables. Physical Review C, 2001, 64, .	2.9	29
293	Automated seed detection and three-dimensional reconstruction. II. Reconstruction of permanent prostate implants using simulated annealing. Medical Physics, 2001, 28, 2272-2279.	3.0	61
294	Testing binomial reducibility and thermal scaling in hadron-induced multifragmentation. Physical Review C, 2001, 63, .	2.9	17
295	Thermal excitation-energy deposition in 5–15GeV/chadron-induced reactions with197Au.I. Reconstruction of thermal source properties. Physical Review C, 2001, 64, .	2.9	22
296	Is Tsallis Thermodynamics Nonextensive?. Physical Review Letters, 2001, 88, 020601.	7.8	44
297	Automated seed detection and three-dimensional reconstruction. I. Seed localization from fluoroscopic images or radiographs. Medical Physics, 2001, 28, 2265-2271.	3.0	44
298	Statistical exploration of fragmentation phase space and source sizes in nuclear multifragmentation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 484, 192-197.	4.1	0
299	Fragment emission time from well defined sources in58Ni+197Auat 34.5 MeV/nucleon. Physical Review C, 2000, 63, .	2.9	8
300	Isospin Fractionation in Nuclear Multifragmentation. Physical Review Letters, 2000, 85, 716-719.	7.8	289
301	Thermal expansion effects in the 8 GeV/cï€â^'+197Aureaction. Physical Review C, 2000, 62, .	2.9	18
302	New method for the discrimination of single-source events in heavy-ion collisions. Physical Review C, 2000, 62, .	2.9	24
303	Signals for a Transition from Surface to Bulk Emission in Thermal Multifragmentation. Physical Review Letters, 2000, 84, 5971-5974.	7.8	92
304	HeatingA197uNuclei with8GeV/cAntiproton andÏ€â^Beams. Physical Review Letters, 1999, 83, 4033-4036.	7.8	23
305	Production and decay of excited quasiprojectiles in peripheral and semiperipheral35Cl+197Aureactions in Fermi energy domain. Physical Review C, 1999, 59, 269-284.	2.9	2
306	Probing midrapidity source characteristics with charged particles and neutrons in the the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with charged particles and neutrons in the source characteristics with characteristics with charged particles and neutrons in the source characteristics with characteris	2.9	25

#	Article	IF	CITATIONS
307	Measurements of low-energy (d,n) reactions for BNCT. Medical Physics, 1999, 26, 793-798.	3.0	30
308	Thermal excitation of heavy nuclei with 5–15 GeV/c antiproton, proton and pion beams. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1999, 463, 159-167.	4.1	36
309	Heating nuclei with 8 GeV/c antiprotons. Nuclear Physics A, 1999, 655, c275-c280.	1.5	1
310	Symmetrization of emitter size in violent "light―heavy ion collisions at intermediate energy. Physical Review C, 1998, 57, R1027-R1031.	2.9	4
311	Z-Dependent Barriers in Multifragmentation from Poissonian Reducibility and Thermal Scaling. Physical Review Letters, 1998, 81, 770-773.	7.8	16
312	Evidence for Dynamical Fragment Production?. Physical Review Letters, 1998, 81, 4021-4021.	7.8	1
313	Heavy ion response of amorphous silicon transmission detectors for particle identification. IEEE Transactions on Nuclear Science, 1998, 45, 676-680.	2.0	0
314	Formation of a necklike structure in35Cl+12C and197Au reactions at 43 MeV/nucleon. Physical Review C, 1997, 55, 1869-1880.	2.9	31
315	Calibration of plastic phoswich detectors for charged particle detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 374, 63-69.	1.6	18
316	Time scale in 24Mg projectile breakup at 25A and 35A MeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 373, 40-44.	4.1	4
317	Exclusive multidetection and study of projectile breakup at 25 and 35A MeV in. Nuclear Physics A, 1996, 609, 108-130.	1.5	3
318	An exclusive analysis of dissipation for light heavy-ion collisions at intermediate energy within the hybrid model. Nuclear Physics A, 1996, 611, 370-391.	1.5	0
319	Source size scaling of fragment production in projectile breakup. Physical Review C, 1996, 54, R973-R976.	2.9	32
320	Dependence of intermediate mass fragment production on the reaction mechanism in light heavy-ion collisions at intermediate energy. Physical Review C, 1996, 53, 823-837.	2.9	16
321	Pionic Fusion of Heavy Ions. Physical Review Letters, 1996, 77, 2408-2411.	7.8	10
322	Direct Measurement of Dissipation in the35Cl+12CReaction at 43 MeV/nucleon. Physical Review Letters, 1996, 77, 462-465.	7.8	27
323	Dissipative binary mechanisms in collisions at 25A and 35A MeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1995, 352, 8-13.	4.1	15
324	Statistical and sequential breakup of 24Mg in peripheral reactions at intermediate energies. Nuclear Physics A, 1995, 583, 427-432.	1.5	6

#	Article	IF	CITATIONS
325	Excitation energies in statistical emission of light charged particles in heavy-ion reactions. Physical Review C, 1995, 51, 3492-3495.	2.9	4
326	Energy-light relation for CsI(T1) scintillators in heavy ion experiments at intermediate energies. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 348, 167-172.	1.6	35
327	Statistical signatures of the quasi-projectile breakup at 70A MeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 323, 103-106.	4.1	7
328	Breakup of highly excited 35Cl projectiles on a gold target at 30 A MeV: An exclusive analysis. Nuclear Physics A, 1994, 580, 81-99.	1.5	10
329	Evidence for the statistical and sequential nature ofO16breakup into four alphas. Physical Review C, 1993, 48, 2514-2516.	2.9	13
330	Excitation energy evolution and multi-particle correlations in heavy ion peripheral collisions at intermediate energies. Nuclear Physics A, 1992, 545, 363-368.	1.5	8