
## Bryan W Boudouris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7385825/publications.pdf Version: 2024-02-01



REVAN W ROUDOURIS

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Controlling inelastic light scattering quantum pathways in graphene. Nature, 2011, 471, 617-620.                                                                                                                     | 27.8 | 492       |
| 2  | Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nature Chemistry,<br>2019, 11, 1151-1157.                                                                                               | 13.6 | 302       |
| 3  | A nonconjugated radical polymer glass with high electrical conductivity. Science, 2018, 359, 1391-1395.                                                                                                              | 12.6 | 203       |
| 4  | Nanoporous Poly(3-alkylthiophene) Thin Films Generated from Block Copolymer Templates.<br>Macromolecules, 2008, 41, 67-75.                                                                                           | 4.8  | 182       |
| 5  | Tuning Polythiophene Crystallization through Systematic Side Chain Functionalization.<br>Macromolecules, 2010, 43, 7895-7899.                                                                                        | 4.8  | 148       |
| 6  | Radical Polymers and Their Application to Organic Electronic Devices. Macromolecules, 2014, 47, 6145-6158.                                                                                                           | 4.8  | 137       |
| 7  | Poly(3-alkylthiophene) Diblock Copolymers with Ordered Microstructures and Continuous<br>Semiconducting Pathways. Journal of the American Chemical Society, 2011, 133, 9270-9273.                                    | 13.7 | 117       |
| 8  | Real-Time Observation of Poly(3-alkylthiophene) Crystallization and Correlation with Transient Optoelectronic Properties. Macromolecules, 2011, 44, 6653-6658.                                                       | 4.8  | 99        |
| 9  | Controlled Radical Polymerization and Quantification of Solid State Electrical Conductivities of<br>Macromolecules Bearing Pendant Stable Radical Groups. ACS Applied Materials & Interfaces, 2013,<br>5, 9896-9901. | 8.0  | 93        |
| 10 | Intramolecular Exciton Relaxation and Migration Dynamics in Poly(3-hexylthiophene). Journal of<br>Physical Chemistry C, 2007, 111, 15404-15414.                                                                      | 3.1  | 89        |
| 11 | Tunable nanoporous membranes with chemically-tailored pore walls from triblock polymer templates.<br>Journal of Membrane Science, 2014, 470, 246-256.                                                                | 8.2  | 88        |
| 12 | Solid State Electrical Conductivity of Radical Polymers as a Function of Pendant Group Oxidation State. Macromolecules, 2014, 47, 3713-3719.                                                                         | 4.8  | 85        |
| 13 | Nanoporous membranes generated from selfâ€assembled block polymer precursors: <i><scp>Q</scp>uo<br/><scp>V</scp>adis</i> ?. Journal of Applied Polymer Science, 2015, 132, .                                         | 2.6  | 72        |
| 14 | Fit-for-purpose block polymer membranes molecularly engineered for water treatment. Npj Clean<br>Water, 2018, 1, .                                                                                                   | 8.0  | 72        |
| 15 | Unusually Stable Hysteresis in the pH-Response of Poly(Acrylic Acid) Brushes Confined within<br>Nanoporous Block Polymer Thin Films. Journal of the American Chemical Society, 2016, 138, 7030-7039.                 | 13.7 | 70        |
| 16 | Stable Radical Materials for Energy Applications. Annual Review of Chemical and Biomolecular Engineering, 2018, 9, 83-103.                                                                                           | 6.8  | 70        |
| 17 | Block Polymer Membranes Functionalized with Nanoconfined Polyelectrolyte Brushes Achieve<br>Sub-Nanometer Selectivity. ACS Macro Letters, 2017, 6, 726-732.                                                          | 4.8  | 63        |
| 18 | Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. Light: Science and Applications, 2021, 10, 199.                                                      | 16.6 | 57        |

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | High-Affinity Detection and Capture of Heavy Metal Contaminants using Block Polymer Composite<br>Membranes. ACS Central Science, 2018, 4, 1697-1707.                                                | 11.3 | 56        |
| 20 | Ligand-Driven Grain Engineering of High Mobility Two-Dimensional Perovskite Thin-Film Transistors.<br>Journal of the American Chemical Society, 2021, 143, 15215-15223.                             | 13.7 | 55        |
| 21 | Synthesis, Optical Properties, and Microstructure of a Fullerene-Terminated Poly(3-hexylthiophene).<br>Macromolecules, 2009, 42, 4118-4126.                                                         | 4.8  | 54        |
| 22 | Thermoelectric Performance of an Open-Shell Donor–Acceptor Conjugated Polymer Doped with a<br>Radical-Containing Small Molecule. Macromolecules, 2018, 51, 3886-3894.                               | 4.8  | 51        |
| 23 | Two-dimensional halide perovskites featuring semiconducting organic building blocks. Materials<br>Chemistry Frontiers, 2020, 4, 3400-3418.                                                          | 5.9  | 50        |
| 24 | Recent advances in the syntheses of radical-containing macromolecules. Journal of Polymer Science<br>Part A, 2016, 54, 1875-1894.                                                                   | 2.3  | 49        |
| 25 | 100th Anniversary of Macromolecular Science Viewpoint: Recent Advances and Opportunities for<br>Mixed Ion and Charge Conducting Polymers. ACS Macro Letters, 2020, 9, 646-655.                      | 4.8  | 49        |
| 26 | Nanoporous Block Polymer Thin Films Functionalized with Bio-Inspired Ligands for the Efficient<br>Capture of Heavy Metal Ions from Water. ACS Applied Materials & Interfaces, 2017, 9, 19152-19160. | 8.0  | 48        |
| 27 | Radical polymers as interfacial layers in inverted hybrid perovskite solar cells. Journal of Materials<br>Chemistry A, 2017, 5, 23831-23839.                                                        | 10.3 | 44        |
| 28 | Nanostructured Membranes from Triblock Polymer Precursors as High Capacity Copper Adsorbents.<br>Langmuir, 2015, 31, 11113-11123.                                                                   | 3.5  | 41        |
| 29 | All-printed stretchable corneal sensor on soft contact lenses for noninvasive and painless ocular electrodiagnosis. Nature Communications, 2021, 12, 1544.                                          | 12.8 | 41        |
| 30 | Defect Characterization in Organic Semiconductors by Forward Bias Capacitance–Voltage (FB-CV)<br>Analysis. Journal of Physical Chemistry C, 2014, 118, 17461-17466.                                 | 3.1  | 40        |
| 31 | Polylactideâ^Polythiopheneâ^Polylactide Triblock Copolymers. Macromolecules, 2010, 43, 3566-3569.                                                                                                   | 4.8  | 39        |
| 32 | Electronic and Spintronic Open-Shell Macromolecules, <i>Quo Vadis</i> ?. Journal of the American<br>Chemical Society, 2022, 144, 626-647.                                                           | 13.7 | 38        |
| 33 | Highly Transparent Crosslinkable Radical Copolymer Thin Film as the Ion Storage Layer in Organic<br>Electrochromic Devices. ACS Applied Materials & Interfaces, 2018, 10, 18956-18963.              | 8.0  | 37        |
| 34 | Molecular Design Features for Charge Transport in Nonconjugated Radical Polymers. Journal of the<br>American Chemical Society, 2021, 143, 11994-12002.                                              | 13.7 | 35        |
| 35 | Nanoscale Mapping of Dielectric Properties of Nanomaterials from Kilohertz to Megahertz Using<br>Ultrasmall Cantilevers. ACS Nano, 2016, 10, 4062-4071.                                             | 14.6 | 32        |
| 36 | Quantification of the solid-state charge mobility in a model radical polymer. Applied Physics Letters, 2014, 104, .                                                                                 | 3.3  | 31        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | High-Spin ( <i>S</i> = 1) Blatter-Based Diradical with Robust Stability and Electrical Conductivity.<br>Journal of the American Chemical Society, 2022, 144, 6059-6070.                                                        | 13.7 | 30        |
| 38 | Engineering optoelectronically active macromolecules for polymer-based photovoltaic and thermoelectric devices. Current Opinion in Chemical Engineering, 2013, 2, 294-301.                                                     | 7.8  | 28        |
| 39 | Suppressing the environmental dependence of the openâ€circuit voltage in inverted polymer solar cells<br>through a radical polymer anodic modifier. Journal of Polymer Science, Part B: Polymer Physics, 2015,<br>53, 311-316. | 2.1  | 28        |
| 40 | Tuning the Thermoelectric Properties of a Conducting Polymer through Blending with Open-Shell<br>Molecular Dopants. ACS Applied Materials & Interfaces, 2015, 7, 18195-18200.                                                  | 8.0  | 28        |
| 41 | Impact of the Addition of Redox-Active Salts on the Charge Transport Ability of Radical Polymer Thin<br>Films. Macromolecules, 2016, 49, 4784-4791.                                                                            | 4.8  | 28        |
| 42 | Thermoelectric Performance of Lead-Free Two-Dimensional Halide Perovskites Featuring Conjugated<br>Ligands. Nano Letters, 2021, 21, 7839-7844.                                                                                 | 9.1  | 28        |
| 43 | Systematic Control of the Nanostructure of Semiconducting-Ferroelectric Polymer Composites in Thin Film Memory Devices. ACS Macro Letters, 2015, 4, 293-297.                                                                   | 4.8  | 27        |
| 44 | Nanomanufacturing of high-performance hollow fiber nanofiltration membranes by coating uniform block polymer films from solution. Journal of Materials Chemistry A, 2017, 5, 3358-3370.                                        | 10.3 | 27        |
| 45 | Organic Radical Polymers. SpringerBriefs in Materials, 2017, , .                                                                                                                                                               | 0.3  | 26        |
| 46 | Collection-limited theory interprets the extraordinary response of single semiconductor organic<br>solar cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112,<br>11193-11198.    | 7.1  | 24        |
| 47 | Controlling openâ€shell loading in norborneneâ€based radical polymers modulates the solidâ€state charge<br>transport exponentially. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1516-1525.                  | 2.1  | 24        |
| 48 | Fabrication of silver nanostructures using femtosecond laser-induced photoreduction.<br>Nanotechnology, 2017, 28, 505302.                                                                                                      | 2.6  | 24        |
| 49 | Designing Donor–Acceptor Copolymers for Stable and High-Performance Organic Electrochemical<br>Transistors. ACS Macro Letters, 2021, 10, 1061-1067.                                                                            | 4.8  | 24        |
| 50 | Tailored thioxanthoneâ€based photoinitiators for twoâ€photonâ€controllable polymerization and nanolithographic printing. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1462-1475.                             | 2.1  | 23        |
| 51 | Mixed Ionic and Electronic Conduction in Radical Polymers. Macromolecules, 2020, 53, 4435-4441.                                                                                                                                | 4.8  | 21        |
| 52 | Design of Super-Paramagnetic Core–Shell Nanoparticles for Enhanced Performance of Inverted<br>Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 25061-25068.                                                   | 8.0  | 19        |
| 53 | Substituted Thioxanthone-Based Photoinitiators for Efficient Two-Photon Direct Laser Writing Polymerization with Two-Color Resolution. ACS Applied Polymer Materials, 2021, 3, 1426-1435.                                      | 4.4  | 19        |
| 54 | Intramolecular Exciton Diffusion in Poly(3-hexylthiophene). Journal of Physical Chemistry Letters, 2013, 4, 3445-3449.                                                                                                         | 4.6  | 18        |

| #  | Article                                                                                                                                                                                                                                                                                                                                              | IF                | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 55 | Radical polymers improve the metal-semiconductor interface in organic field-effect transistors.<br>Organic Electronics, 2016, 37, 148-154.                                                                                                                                                                                                           | 2.6               | 17        |
| 56 | Solution-based synthesis and characterization of earth abundant<br>Cu <sub>3</sub> (As,Sb)Se <sub>4</sub> nanocrystal alloys: towards scalable room-temperature<br>thermoelectric devices. Journal of Materials Chemistry A, 2016, 4, 2198-2204.                                                                                                     | 10.3              | 17        |
| 57 | Surface tension behavior of aqueous solutions of a propoxylated surfactant and interfacial tension<br>behavior against a crude oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018,<br>537, 163-172.                                                                                                                         | 4.7               | 17        |
| 58 | Structure, properties and applications of thermoelectric polymers. Journal of Applied Polymer Science, 2017, 134, .                                                                                                                                                                                                                                  | 2.6               | 16        |
| 59 | Device Engineering in Organic Electrochemical Transistors toward Multifunctional Applications. ACS<br>Applied Electronic Materials, 2021, 3, 2434-2448.                                                                                                                                                                                              | 4.3               | 16        |
| 60 | An evaluation of complementary approaches to elucidate fundamental interfacial phenomena driving adhesion of energetic materials. Journal of Colloid and Interface Science, 2016, 473, 28-33.                                                                                                                                                        | 9.4               | 14        |
| 61 | Enhancing polymer thermoelectric performance using radical dopants. Organic Electronics, 2017, 51, 243-248.                                                                                                                                                                                                                                          | 2.6               | 14        |
| 62 | Design of an n-type low glass transition temperature radical polymer. Polymer Chemistry, 2021, 12, 1448-1457.                                                                                                                                                                                                                                        | 3.9               | 13        |
| 63 | Synthesis and thin-film self-assembly of radical-containing diblock copolymers. MRS Communications, 2015, 5, 257-263.                                                                                                                                                                                                                                | 1.8               | 12        |
| 64 | Modifying the Surface Chemistry and Nanostructure of Carbon Nanotubes Facilitates the Detection of Aromatic Hydrocarbon Gases. ACS Applied Nano Materials, 2020, 3, 10389-10398.                                                                                                                                                                     | 5.0               | 12        |
| 65 | Radical Polymer-Based Organic Electrochemical Transistors. ACS Macro Letters, 2022, 11, 243-250.                                                                                                                                                                                                                                                     | 4.8               | 11        |
| 66 | Polymerization Rate Considerations for High Molecular Weight<br>Polyisopreneâ€ <i>b</i> â€Polystyreneâ€ <i>b</i> â€Poly( <i>N</i> , <i>N</i> â€dimethylacrylamide) Triblock Polymer<br>Synthesized Via Sequential Reversible Additionâ€Fragmentation Chain Transfer (RAFT) Reactions.<br>Macromolecular Chemistry and Physics, 2015, 216, 1831-1840. | <sup>^S</sup> 2.2 | 10        |
| 67 | A rheometry method to assess the evaporationâ€induced mechanical strength development of polymer solutions used for membrane applications. Journal of Applied Polymer Science, 2019, 136, 47038.                                                                                                                                                     | 2.6               | 9         |
| 68 | Manipulating polymer composition to create low-cost, high-fidelity sensors for indoor CO2 monitoring. Scientific Reports, 2021, 11, 13237.                                                                                                                                                                                                           | 3.3               | 9         |
| 69 | Two-Dimensional Organic Semiconductor-Incorporated Perovskite (OSiP) Electronics. ACS Applied Electronic Materials, 2021, 3, 5155-5164.                                                                                                                                                                                                              | 4.3               | 9         |
| 70 | Design of a three-state switchable chromogenic radical-based moiety and its translation to molecular<br>logic systems. Molecular Systems Design and Engineering, 2017, 2, 159-164.                                                                                                                                                                   | 3.4               | 8         |
| 71 | Organic Cation Engineering for Vertical Charge Transport in Leadâ€Free Perovskite Quantum Wells.<br>Small Science, 2021, 1, 2000024.                                                                                                                                                                                                                 | 9.9               | 8         |
| 72 | Design of Mixed Electron- and Ion-Conducting Radical Polymer-Based Blends. Macromolecules, 2021, 54, 5178-5186.                                                                                                                                                                                                                                      | 4.8               | 8         |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Design of freeâ€standing microstructured conducting polymer films for enhanced particle removal<br>from nonâ€uniform surfaces. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1968-1974.                               | 2.1 | 7         |
| 74 | Electronic and Magnetic Properties of a Three-Arm Nonconjugated Open-Shell Macromolecule. ACS<br>Polymers Au, 2022, 2, 59-68.                                                                                                          | 4.1 | 6         |
| 75 | Design Considerations for Nextâ€Generation Polymer Sorbents: From Polymer Chemistry to Device<br>Configurations. Macromolecular Chemistry and Physics, 2022, 223, .                                                                    | 2.2 | 6         |
| 76 | On the Environmental and Electrical Bias Stability of Radical Polymer Conductors in the Solid State.<br>Macromolecular Chemistry and Physics, 2016, 217, 477-484.                                                                      | 2.2 | 5         |
| 77 | Phase and rheological behavior of aqueous mixtures of an isopropoxylated surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554, 60-73.                                                               | 4.7 | 5         |
| 78 | Radical Polymers Alter the Carrier Properties of Semiconducting Carbon Nanotubes. ACS Applied Polymer Materials, 2019, 1, 204-210.                                                                                                     | 4.4 | 5         |
| 79 | Rethinking the Analysis of the Linear Viscoelastic Behavior of an Epoxy Polymer near and above the<br>Glass Transition. Macromolecules, 2020, 53, 1867-1880.                                                                           | 4.8 | 5         |
| 80 | High‧peed Oneâ€Photon 3D Nanolithography Using Controlled Initiator Depletion and Inhibitor<br>Transport. Advanced Optical Materials, 2022, 10, .                                                                                      | 7.3 | 5         |
| 81 | Effect of intrachain sulfonic acid dopants on the solid-state charge mobility of a model radical polymer. Thin Solid Films, 2015, 577, 56-61.                                                                                          | 1.8 | 4         |
| 82 | Impact of surface chemistry on the adhesion of an energetic small molecule to a conducting polymer surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 551, 74-80.                                        | 4.7 | 4         |
| 83 | Solution selfâ€assembly behavior of A ―B ―C triblock polymers and the implications for nanoporous membrane fabrication. Journal of Applied Polymer Science, 2018, 135, 45531.                                                          | 2.6 | 4         |
| 84 | Effects of the water-oil volume ratio and premixing or pre-equilibration on the interfacial tension<br>and phase behavior of biphasic mixtures. Colloids and Surfaces A: Physicochemical and Engineering<br>Aspects, 2019, 571, 55-63. | 4.7 | 4         |
| 85 | Modifying field-effect transistor response in a conjugated polymer upon the addition of radical dopants. Thin Solid Films, 2020, 714, 138391.                                                                                          | 1.8 | 4         |
| 86 | A Chemiresistive CO <sub>2</sub> Sensor Based on CNT-Functional Polymer Composite Films. , 2020, , .                                                                                                                                   |     | 4         |
| 87 | Impact of openâ€shell loading on mass transport and doping in conjugated radical polymers. Journal of<br>Polymer Science, 0, , .                                                                                                       | 3.8 | 4         |
| 88 | Analyzing adhesion in microstructured systems through a robust computational approach. Surface and Interface Analysis, 2017, 49, 1165-1170.                                                                                            | 1.8 | 3         |
| 89 | Energetic Microparticle Adhesion to Functionalized Surfaces. Propellants, Explosives, Pyrotechnics, 2018, 43, 862-868.                                                                                                                 | 1.6 | 3         |
| 90 | Tuning the interfacial and energetic interactions between a photoexcited conjugated polymer and open-shell small molecules. Soft Matter, 2019, 15, 1413-1422.                                                                          | 2.7 | 3         |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | A Resonant CO <sub>2</sub> Sensor Functionalized with a Polymerized Ionic Liquid. , 2019, , .                                                                                                     |     | 3         |
| 92 | Relationship of Various Interfacial Tensions of Surfactants/Brine/Oil Formulations to Oil Recovery<br>Efficiency. Energy & Fuels, 2021, 35, 7768-7777.                                            | 5.1 | 3         |
| 93 | A Carbon Nanotube-Functional Polymer Composite Film for Low-Power Indoor COâ,, Monitoring. IEEE<br>Sensors Journal, 2022, 22, 11233-11240.                                                        | 4.7 | 3         |
| 94 | Applications of Radical Polymers in Solid-State Devices. SpringerBriefs in Materials, 2017, , 57-71.                                                                                              | 0.3 | 2         |
| 95 | Poly (5-carboxyindole)–β-cyclodextrin composite material for enhanced formaldehyde gas sensing.<br>Journal of Materials Science, 2022, 57, 11460-11474.                                           | 3.7 | 2         |
| 96 | Accurate Determination of the Equilibrium Surface Tension Values with Area Perturbation Tests.<br>Journal of Visualized Experiments, 2019, , .                                                    | 0.3 | 1         |
| 97 | Sorption Kinetics of Poly(ethyleneimine)–Poly(ethylene Oxide) Blends and the Implication for<br>Low-Cost, Small-Scale CO <sub>2</sub> Sensors. ACS Applied Polymer Materials, 2022, 4, 4389-4397. | 4.4 | 1         |
| 98 | A Vapor Phase Trinitrotoluene Threshold Detector Enabled by Nonlinear Feedback. , 2020, 4, 1-4.                                                                                                   |     | 0         |
| 99 | Conductive Polymer Spark Gap Igniters. Propellants, Explosives, Pyrotechnics, 2021, 46, 1500.                                                                                                     | 1.6 | 0         |