Karl Krieger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7385441/publications.pdf Version: 2024-02-01

KADI KDIECED

#	Article	IF	CITATIONS
1	Operating a full tungsten actively cooled tokamak: overview of WEST first phase of operation. Nuclear Fusion, 2022, 62, 042007.	3.5	39
2	The MEMOS-U macroscopic melt dynamics code—benchmarking and applications. Physica Scripta, 2021, 96, 124009.	2.5	9
3	Gross and net erosion balance of plasma-facing materials in full-W tokamaks. Nuclear Fusion, 2021, 61, 116006.	3.5	13
4	Sustained W-melting experiments on actively cooled ITER-like plasma facing unit in WEST. Physica Scripta, 2021, 96, 124057.	2.5	19
5	Impact of H-mode plasma operation on pre-damaged tungsten divertor tiles in ASDEX Upgrade. Physica Scripta, 2020, T171, 014037.	2.5	4
6	Resolidification-controlled melt dynamics under fast transient tokamak plasma loads. Nuclear Fusion, 2020, 60, 104001.	3.5	30
7	ERO modelling of net and gross erosion of marker samples exposed to L-mode plasmas on ASDEX Upgrade. Nuclear Materials and Energy, 2020, 25, 100863.	1.3	1
8	Overview of physics studies on ASDEX Upgrade. Nuclear Fusion, 2019, 59, 112014.	3.5	38
9	Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade. Nuclear Fusion, 2019, 59, 086020.	3.5	34
10	Overview of the JET preparation for deuterium–tritium operation with the ITER like-wall. Nuclear Fusion, 2019, 59, 112021.	3.5	87
11	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:msup><mml:mrow /><mml:mn>6</mml:mn></mml:mrow </mml:msup><mml:mstyle mathyariant="normal"><mml:mi>l</mml:mi>s<mml:msup><mml:msup><mml:mo>ât'</mml:mo>6</mml:msup></mml:msup></mml:mstyle </mml:mrow>	1.3 	8
12	mathvariant="normal"> <mml:mi>E</mml:mi> +Experiments on transient melting of tungsten by ELMs in ASDEX Upgrade. Nuclear Fusion, 2018, 58, 026024.	v> 3.5	ath> 38
13	MEMOS 3D modelling of ELM-induced transient melt damage on an inclined tungsten surface in the ASDEX Upgrade outer divertor. Nuclear Materials and Energy, 2018, 17, 194-199.	1.3	13
14	An improved model for the accurate calculation of parallel heat fluxes at the JET bulk tungsten outer divertor. Nuclear Fusion, 2018, 58, 106034.	3.5	6
15	Heat flux analysis of Type-I ELM impact on a sloped, protruding surface in the JET bulk tungsten divertor. Nuclear Materials and Energy, 2018, 17, 182-187.	1.3	3
16	Self-consistent description of the replacement current driving melt layer motion in fusion devices. Nuclear Fusion, 2018, 58, 106003.	3.5	18
17	Interaction of metal dust adhered on castellated substrates with the ELMy H-mode plasmas of ASDEX-Upgrade. Nuclear Fusion, 2018, 58, 106023.	3.5	12
18	Surface modification of He pre-exposed tungsten samples by He plasma impact in the divertor manipulator of ASDEX Upgrade. Nuclear Materials and Energy, 2017, 12, 575-581.	1.3	18

Karl Krieger

#	Article	IF	CITATIONS
19	Nitrogen transport in ASDEX Upgrade: Role of surface roughness and transport to the main wall. Nuclear Materials and Energy, 2017, 12, 51-59.	1.3	9
20	Thermal analysis of protruding surfaces in the JET divertor. Nuclear Fusion, 2017, 57, 066009.	3.5	1
21	Plasma-wall interaction studies in the full-W ASDEX upgrade during helium plasma discharges. Nuclear Fusion, 2017, 57, 066015.	3.5	16
22	Micro-NRA and micro-3HIXE with 3 He microbeam on samples exposed in ASDEX Upgrade and Pilot-PSI machines. Nuclear Instruments & Methods in Physics Research B, 2017, 404, 179-184.	1.4	5
23	Physics conclusions in support of ITER W divertor monoblock shaping. Nuclear Materials and Energy, 2017, 12, 60-74.	1.3	128
24	Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution ^a . Nuclear Fusion, 2017, 57, 102014.	3.5	23
25	Transient induced tungsten melting at the Joint European Torus (JET). Physica Scripta, 2017, T170, 014013.	2.5	20
26	Simulations with current constraints of ELM-induced tungsten melt motion in ASDEX Upgrade. Physica Scripta, 2017, T170, 014006.	2.5	13
27	Investigation of probe surfaces after ion cyclotron wall conditioning in ASDEX upgrade. Nuclear Materials and Energy, 2017, 12, 733-735.	1.3	3
28	Overview of the JET results in support to ITER. Nuclear Fusion, 2017, 57, 102001.	3.5	150
29	Simulations of thermionic suppression during tungsten transient melting experiments. Physica Scripta, 2017, T170, 014069.	2.5	18
30	Investigation of transient melting of tungsten by ELMs in ASDEX Upgrade. Physica Scripta, 2017, T170, 014030.	2.5	19
31	Study of lateral distribution of impurities on samples exposed in the ASDEX Upgrade using microbeam of 3He and 1H. Physica Scripta, 2017, T170, 014067.	2.5	1
32	Simulating the nitrogen migration in Be/W tokamaks with WallDYN. Physica Scripta, 2016, T167, 014079.	2.5	6
33	Nitrogen retention mechanisms in tokamaks with beryllium and tungsten plasma-facing surfaces. Physica Scripta, 2016, T167, 014077.	2.5	18
34	Experimental analysis and WallDYN simulations of the global nitrogen migration in ASDEX Upgrade L-mode discharges. Nuclear Fusion, 2016, 56, 036014.	3.5	4
35	Gross and net erosion of tungsten in the outer strike-point region of ASDEX Upgrade. Physica Scripta, 2016, T167, 014026.	2.5	16
36	Nitrogen retention in ASDEX Upgrade. Journal of Nuclear Materials, 2015, 463, 668-671.	2.7	10

#	Article	IF	CITATIONS
37	Quantitative modeling of fuel retention in the JET-C and JET-ILW wall configurations by WallDYN and predictions for ITER. Journal of Nuclear Materials, 2015, 463, 66-72.	2.7	49
38	Beryllium migration in JET ITER-like wall plasmas. Nuclear Fusion, 2015, 55, 063021.	3.5	83
39	ELM induced tungsten melting and its impact on tokamak operation. Journal of Nuclear Materials, 2015, 463, 78-84.	2.7	53
40	ELM-induced transient tungsten melting in the JET divertor. Nuclear Fusion, 2015, 55, 023010.	3.5	83
41	WALLDYN simulations of global impurity migration in JET and extrapolations to ITER. Nuclear Fusion, 2015, 55, 053015.	3.5	67
42	Optimization of tungsten castellated structures for the ITER divertor. Journal of Nuclear Materials, 2015, 463, 174-179.	2.7	3
43	Filament transport, warm ions and erosion in ASDEX Upgrade L-modes. Nuclear Fusion, 2015, 55, 033018.	3.5	34
44	A large divertor manipulator for ASDEX Upgrade. Fusion Engineering and Design, 2015, 98-99, 1496-1499.	1.9	31
45	Solid tungsten Divertor-III for ASDEX Upgrade and contributions to ITER. Nuclear Fusion, 2015, 55, 063015.	3.5	35
46	Deuterium retention in tungsten used in ASDEX Upgrade: comparison of tokamak and laboratory studies. Physica Scripta, 2014, T159, 014043.	2.5	10
47	First results from the ¹⁰ Be marker experiment in JET with ITER-like wall. Nuclear Fusion, 2014, 54, 082004.	3.5	4
48	Study of physical and chemical assisted physical sputtering of beryllium in the JET ITER-like wall. Nuclear Fusion, 2014, 54, 103001.	3.5	55
49	Long-term evolution of the impurity composition and impurity events with the ITER-like wall at JET. Nuclear Fusion, 2013, 53, 073043.	3.5	35
50	Blistering and re-deposition on tungsten exposed to ASDEX Upgrade divertor plasma. Journal of Nuclear Materials, 2013, 438, S220-S223.	2.7	34
51	Beryllium migration and evolution of first wall surface composition in the JET ILW configuration. Journal of Nuclear Materials, 2013, 438, S262-S266.	2.7	30
52	First studies of ITER-diagnostic mirrors in a tokamak with an all-metal interior: results of the first mirror test in ASDEX Upgrade. Nuclear Fusion, 2013, 53, 073033.	3.5	26
53	3D trajectories re-construction of droplets ejected in controlled tungsten melting studies in ASDEX Upgrade. Journal of Nuclear Materials, 2013, 438, S846-S851.	2.7	9
54	Overview on plasma operation with a full tungsten wall in ASDEX Upgrade. Journal of Nuclear Materials, 2013, 438, S34-S41.	2.7	156

#	Article	IF	CITATIONS
55	Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads. Journal of Nuclear Materials, 2013, 433, 523-530.	2.7	50
56	Residual carbon content in the initial ITER-Like Wall experiments at JET. Journal of Nuclear Materials, 2013, 438, S303-S308.	2.7	75
57	Tungsten divertor erosion in all metal devices: Lessons from the ITER like wall of JET. Journal of Nuclear Materials, 2013, 438, S42-S47.	2.7	116
58	Overview of ASDEX Upgrade results. Nuclear Fusion, 2013, 53, 104003.	3.5	36
59	Global migration of 13C impurities in high-density L-mode plasmas in ASDEX Upgrade. Journal of Nuclear Materials, 2013, 438, S694-S697.	2.7	8
60	Evolution of surface melt damage, its influence on plasma performance and prospects of recovery. Journal of Nuclear Materials, 2013, 438, S27-S33.	2.7	31
61	Fuel retention studies with the ITER-Like Wall in JET. Nuclear Fusion, 2013, 53, 083023.	3.5	193
62	Global migration of impurities in tokamaks. Plasma Physics and Controlled Fusion, 2013, 55, 124029.	2.1	15
63	Modeling of Impurity Transport in the Divertor of JET. Plasma and Fusion Research, 2013, 8, 2402038.	0.7	1
64	The effect of non-axisymmetric wall geometry on13C transport in ASDEX Upgrade. Nuclear Fusion, 2012, 52, 032001.	3.5	15
65	Integration of a radiative divertor for heat load control into JET high triangularity ELMy H-mode plasmas. Nuclear Fusion, 2012, 52, 063022.	3.5	58
66	Outer divertor of ASDEX Upgrade in low-density L-mode discharges in forward and reversed magnetic field: II. Analysis of local impurity migration. Nuclear Fusion, 2012, 52, 103007.	3.5	7
67	Study of interaction of C+ ion beam with a Si pitch grating on a macro-scale level. Nuclear Instruments & Methods in Physics Research B, 2012, 293, 11-15.	1.4	2
68	An overview of sputtering-related processes occurring at mixed surfaces formed by simultaneous C+ and D+ irradiation of W. Journal of Nuclear Materials, 2012, 427, 401-410.	2.7	7
69	Macroscopic parameters of the interaction of an Ar+ ion beam with a Si pitch grating. Nuclear Instruments & Methods in Physics Research B, 2012, 278, 4-7.	1.4	3
70	Controlled tungsten melting and droplet ejection studies in ASDEX Upgrade. Physica Scripta, 2011, T145, 014067.	2.5	25
71	DIVIMP simulation of W transport in the SOL of JET H-mode plasmas. Physica Scripta, 2011, T145, 014013.	2.5	14
72	DIVIMP simulations of 13C puffing experiments in ASDEX Upgrade L-mode plasma. Journal of Nuclear Materials, 2011, 415, S479-S482.	2.7	6

#	Article	IF	CITATIONS
73	Global transport of light elements boron and carbon in the full-W ASDEX Upgrade. Journal of Nuclear Materials, 2011, 415, S227-S230.	2.7	4
74	Consequences of deuterium retention and release from Be-containing mixed materials for ITER Tritium Inventory Control. Journal of Nuclear Materials, 2011, 415, S731-S734.	2.7	29
75	Overview of experimental preparation for the ITER-Like Wall at JET. Journal of Nuclear Materials, 2011, 415, S936-S942.	2.7	29
76	Effect of E×B driven transport on the deposition of carbon in the outer divertor of ASDEX Upgrade. Journal of Nuclear Materials, 2011, 415, S231-S234.	2.7	12
77	3D modeling of the ASDEX Upgrade edge plasma exposed to a localized tungsten source by means of EMC3-Eirene. Journal of Nuclear Materials, 2011, 415, S505-S508.	2.7	15
78	Overview of material migration and mixing, fuel retention and cleaning of ITER-like castellated structures in TEXTOR. Journal of Nuclear Materials, 2011, 415, S289-S292.	2.7	20
79	Measurements of beryllium sputtering yields at JET. Journal of Nuclear Materials, 2011, 415, S170-S173.	2.7	16
80	Induced tungsten melting events in the divertor of ASDEX Upgrade and their influence on plasma performance. Journal of Nuclear Materials, 2011, 415, S297-S300.	2.7	34
81	Influence of beryllium carbide formation on deuterium retention and release. Journal of Nuclear Materials, 2011, 415, S713-S716.	2.7	16
82	Interpretation of Be migration studies at JET and validation of an integrated numerical model for plasma impurity transport and wall composition dynamics. Journal of Nuclear Materials, 2011, 415, S305-S309.	2.7	9
83	An integrated model of impurity migration and wall composition dynamics for tokamaks. Journal of Nuclear Materials, 2011, 415, S284-S288.	2.7	52
84	Multi machine scaling of fuel retention in 4 carbon dominated tokamaks. Journal of Nuclear Materials, 2011, 415, S735-S739.	2.7	20
85	Deuterium retention in bulk tungsten exposed to the outer divertor plasma of ASDEX Upgrade. Physica Scripta, 2011, T145, 014033.	2.5	11
86	Overview of ASDEX Upgrade results. Nuclear Fusion, 2011, 51, 094012.	3.5	27
87	EMC3-Eirene simulations of the spatial dependence of the tungsten divertor retention in ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2011, 53, 125010.	2.1	28
88	Fuel retention in impurity seeded discharges in JET after Be evaporation. Nuclear Fusion, 2011, 51, 073007.	3.5	15
89	Modelling of Carbon Transport in the Outer Divertor Plasma of ASDEX Upgrade. Contributions To Plasma Physics, 2010, 50, 439-444.	1.1	6
90	DIVIMP-B2-EIRENE modelling of 13C migration and deposition in ASDEX Upgrade L-mode plasmas. Journal of Nuclear Materials, 2010, 396, 228-233.	2.7	8

#	Article	lF	CITATIONS
91	Addendum to papers from Axially Symmetric Divertor Experiment (ASDEX) Upgrade Team, published in Review of Scientific Instruments. Review of Scientific Instruments, 2010, 81, 039903.	1.3	0
92	Migration and deposition of13C in the full-tungsten ASDEX Upgrade tokamak. Plasma Physics and Controlled Fusion, 2010, 52, 065006.	2.1	12
93	Overview of ASDEX Upgrade results. Nuclear Fusion, 2009, 49, 104009.	3.5	11
94	Overview of the recent DiMES and MiMES experiments in DIII-D. Physica Scripta, 2009, T138, 014007.	2.5	20
95	Castellated structures for ITER: Differences of impurity deposition and fuel accumulation in the toroidal and poloidal gaps. Journal of Nuclear Materials, 2009, 386-388, 809-812.	2.7	7
96	Investigations of castellated structures for ITER: The effect of castellation shaping and alignment on fuel retention and impurity deposition in gaps. Journal of Nuclear Materials, 2009, 390-391, 556-559.	2.7	32
97	Hydrogen retention in ITER relevant mixed material layers. Journal of Nuclear Materials, 2009, 390-391, 659-662.	2.7	21
98	Deuterium depth profiling in graphite tiles not exposed to hydrogen discharges before air ventilation of JT-60U. Journal of Nuclear Materials, 2009, 390-391, 667-670.	2.7	1
99	Arcing in ASDEX Upgrade with a tungsten first wall. Journal of Nuclear Materials, 2009, 390-391, 747-750.	2.7	43
100	Reflection properties of small hydrocarbons impinging on tungsten and carbon surfaces. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 700-703.	1.4	1
101	Surface morphology influence on deuterium retention in beryllium films prepared by thermionic vacuum arc method. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 426-429.	1.4	6
102	Recent analysis of key plasma wall interactions issues for ITER. Journal of Nuclear Materials, 2009, 390-391, 1-9.	2.7	671
103	Investigation of local carbon transport in the ASDEX Upgrade divertor using 13CH4 puffing. Journal of Nuclear Materials, 2009, 390-391, 68-71.	2.7	15
104	Be wall sources and migration in L-mode discharges after Be evaporation in the JET tokamak. Journal of Nuclear Materials, 2009, 390-391, 110-114.	2.7	15
105	Simultaneous irradiation of tungsten with deuterium and carbon at elevated temperatures. Journal of Nuclear Materials, 2009, 390-391, 971-974.	2.7	10
106	Modeling tungsten and carbon sputtering by carbon at elevated temperatures. Physica Scripta, 2009, T138, 014045.	2.5	4
107	Tungsten erosion and redeposition in the all-tungsten divertor of ASDEX Upgrade. Physica Scripta, 2009, T138, 014039.	2.5	47
108	Modelling of13CH4injection and local carbon deposition at the outer divertor of ASDEX Upgrade. Physica Scripta, 2009, T138, 014019.	2.5	7

#	Article	IF	CITATIONS
109	Morphology and changes of elemental surface composition of tungsten bombarded with carbon ions. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 1979-1986.	1.4	13
110	Effect of surface roughness and substrate material on carbon erosion and deposition in the TEXTOR tokamak. Plasma Physics and Controlled Fusion, 2008, 50, 095008.	2.1	47
111	Transition from tungsten erosion to carbon layer deposition with simultaneous bombardment of tungsten by helium and carbon. Journal of Applied Physics, 2007, 101, 104906.	2.5	12
112	Chapter 4: Power and particle control. Nuclear Fusion, 2007, 47, S203-S263.	3.5	891
113	Principal processes occurring at simultaneous bombardment of tungsten by carbon and deuterium ions. Journal of Applied Physics, 2007, 102, 074923.	2.5	10
114	Plasma wall interaction and its implication in an all tungsten divertor tokamak. Plasma Physics and Controlled Fusion, 2007, 49, B59-B70.	2.1	110
115	Plasma–surface interaction, scrape-off layer and divertor physics: implications for ITER. Nuclear Fusion, 2007, 47, 1189-1205.	3.5	156
116	DiMES studies of temperature dependence of carbon erosion and re-deposition in the lower divertor of DIII-D under detachment. Physica Scripta, 2007, T128, 29-34.	2.5	17
117	AMS – Sensitive tool used as nuclear safeguard and to diagnose fusion experiments. Nuclear Instruments & Methods in Physics Research B, 2007, 259, 694-701.	1.4	9
118	Final steps to an all tungsten divertor tokamak. Journal of Nuclear Materials, 2007, 363-365, 52-59.	2.7	80
119	Discharge resolved impurity flux measurements in the edge plasma of ASDEX Upgrade by exposure of collector probes. Journal of Nuclear Materials, 2007, 363-365, 242-246.	2.7	10
120	DIVIMP modeling of tungsten impurity transport in ITER. Journal of Nuclear Materials, 2007, 363-365, 674-679.	2.7	31
121	Deuterium depth profiling in JT-60U tiles using the D(3He,p)4He resonant nuclear reaction. Journal of Nuclear Materials, 2007, 363-365, 904-909.	2.7	15
122	Ion beam analysis of H and D retention in the near surface layers of JT-60U plasma facing wall tiles. Journal of Nuclear Materials, 2007, 363-365, 949-954.	2.7	9
123	Divertor and midplane materials evaluation system in DIII-D. Journal of Nuclear Materials, 2007, 363-365, 276-281.	2.7	10
124	Formation of deuterium–carbon inventories in gaps of plasma facing components. Journal of Nuclear Materials, 2007, 363-365, 870-876.	2.7	45
125	Wall conditioning in ASDEX Upgrade. Journal of Nuclear Materials, 2007, 363-365, 1369-1374.	2.7	36
126	Operational conditions in a W-clad tokamak. Journal of Nuclear Materials, 2007, 367-370, 1497-1502.	2.7	45

#	Article	IF	CITATIONS
127	Tungsten sputtering and accumulation of implanted carbon and deuterium by simultaneous bombardment with D and C ions. Journal of Nuclear Materials, 2007, 363-365, 1184-1189.	2.7	17
128	Carbon transport, deposition and fuel accumulation in castellated structures exposed in TEXTOR. Journal of Nuclear Materials, 2007, 367-370, 1481-1486.	2.7	25
129	Castellated structures for ITER: the influence of the shape of castellation on the impurity deposition and fuel accumulation in gaps. Physica Scripta, 2007, T128, 45-49.	2.5	10
130	Tritium retention in next step devices and the requirements for mitigation and removal techniques. Plasma Physics and Controlled Fusion, 2006, 48, B189-B199.	2.1	83
131	Relevance of surface roughness to tungsten sputtering and carbon implantation. Journal of Applied Physics, 2006, 100, 113302.	2.5	23
132	Dual beam experiment for simultaneous irradiation of surfaces with ion species of gaseous and solid-state elements. Review of Scientific Instruments, 2006, 77, 043501.	1.3	15
133	Studies on 13C deposition in ASDEX Upgrade. Journal of Nuclear Materials, 2005, 337-339, 55-59.	2.7	18
134	Formation of D inventories and structural modifications by deuterium bombardment of tungsten thin films. Journal of Nuclear Materials, 2005, 337-339, 965-969.	2.7	8
135	Carbon chemical erosion in H-mode discharges in ASDEX Upgrade divertor IIb: flux dependence and local redeposition. Journal of Nuclear Materials, 2005, 337-339, 985-989.	2.7	17
136	Carbon erosion and deposition on the ASDEX Upgrade divertor tiles. Journal of Nuclear Materials, 2005, 337-339, 119-123.	2.7	35
137	Tritium distribution on plasma-facing tiles from ASDEX Upgrade. Journal of Nuclear Materials, 2005, 337-339, 634-638.	2.7	4
138	Material erosion and migration in tokamaks. Plasma Physics and Controlled Fusion, 2005, 47, B303-B322.	2.1	105
139	Modelling of tungsten migration during limiter ramp-down in the ASDEX Upgrade divertor tokamak. Nuclear Fusion, 2005, 45, 849-855.	3.5	3
140	Report on the 11th European Fusion Physics Workshop (Heraklion, Crete, 8–10 December 2003). Plasma Physics and Controlled Fusion, 2005, 47, 1351-1366.	2.1	0
141	Overview of ASDEX Upgrade results—development of integrated operating scenarios for ITER. Nuclear Fusion, 2005, 45, S98-S108.	3.5	28
142	Tungsten redistribution patterns in ASDEX Upgrade. Journal of Nuclear Materials, 2005, 337-339, 10-16.	2.7	15
143	Key ITER plasma edge and plasma–material interaction issues. Journal of Nuclear Materials, 2003, 313-316, 11-22.	2.7	319
144	New results from the tungsten programme at ASDEX Upgrade. Journal of Nuclear Materials, 2003, 313-316, 116-126.	2.7	73

#	Article	IF	CITATIONS
145	An overview of JET edge modelling activities. Journal of Nuclear Materials, 2003, 313-316, 868-872.	2.7	10
146	Tungsten as plasma-facing material in ASDEX Upgrade. Fusion Engineering and Design, 2003, 65, 367-374.	1.9	57
147	Erosion and migration of tungsten employed at the main chamber first wall of ASDEX Upgrade. Journal of Nuclear Materials, 2003, 313-316, 327-332.	2.7	24
148	Modeling of tungsten transport in the SOL for sources at the central column of ASDEX Upgrade using DIVIMP. Journal of Nuclear Materials, 2003, 313-316, 1216-1220.	2.7	13
149	Overview of ASDEX Upgrade results. Nuclear Fusion, 2003, 43, 1570-1582.	3.5	20
150	Chapter 10: Plasma-Wall Interaction and First-Wall Materials in ASDEX Upgrade. Fusion Science and Technology, 2003, 44, 692-707.	1.1	7
151	Impurity behaviour in the ASDEX Upgrade divertor tokamak with large area tungsten walls. Plasma Physics and Controlled Fusion, 2002, 44, 811-826.	2.1	114
152	Determination of the tungsten divertor retention at ASDEX Upgrade using a sublimation probe. Plasma Physics and Controlled Fusion, 2002, 44, 2091-2100.	2.1	40
153	Erosion and migration of tungsten employed at the central column heat shield of ASDEX Upgrade. Journal of Nuclear Materials, 2002, 307-311, 139-143.	2.7	8
154	Steady state advanced scenarios at ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2002, 44, B69-B83.	2.1	108
155	Plasma–wall interaction at the ASDEX Upgrade tungsten heat shield. Fusion Engineering and Design, 2001, 56-57, 189-193.	1.9	4
156	Plasma operation with tungsten tiles at the central column of ASDEX Upgrade. Journal of Nuclear Materials, 2001, 290-293, 206-210.	2.7	34
157	Studies of tungsten erosion at the inner and outer main chamber wall of the ASDEX Upgrade tokamak. Journal of Nuclear Materials, 2001, 290-293, 326-330.	2.7	7
158	Carbon layers in the divertor of ASDEX Upgrade. Journal of Nuclear Materials, 2001, 290-293, 317-320.	2.7	46
159	Synergistic effects by simultaneous bombardment of tungsten with hydrogen and carbon. Journal of Nuclear Materials, 2001, 290-293, 107-111.	2.7	26
160	Towards an improved understanding of the relationship between plasma edge and materials issues in a next-step fusion device. Journal of Nuclear Materials, 2001, 290-293, 255-259.	2.7	8
161	Overview of ASDEX Upgrade results. Nuclear Fusion, 2001, 41, 1369-1389.	3.5	34
162	Interpretation of the impurity distribution in the divertor during divertor plate biasing using the DIVIMP code. Journal of Nuclear Materials, 2000, 278, 111-116.	2.7	2

#	Article	IF	CITATIONS
163	Erosion of tungsten coated tiles on the central column of ASDEX Upgrade. Nuclear Fusion, 2000, 40, 1441-1444.	3.5	15
164	Overview of ASDEX Upgrade results. Nuclear Fusion, 1999, 39, 1321-1336.	3.5	47
165	A sublimation probe for the injection of high-Z impurities into fusion devices. Review of Scientific Instruments, 1999, 70, 63-67.	1.3	17
166	Erosion and deposition in the ASDEX Upgrade tungsten divertor experiment. Journal of Nuclear Materials, 1999, 266-269, 1003-1008.	2.7	40
167	Conclusions about the use of tungsten in the divertor of ASDEX Upgrade. Journal of Nuclear Materials, 1999, 266-269, 207-216.	2.7	126
168	Depth profile determination with confidence intervals from Rutherford backscattering data. New Journal of Physics, 1999, 1, 11-11.	2.9	25
169	Depth Profile Reconstruction from Rutherford Backscattering Data. , 1999, , 107-114.		3
170	Performance of tungsten coatings as plasma facing components used in ASDEX Upgrade. Journal of Nuclear Materials, 1998, 258-263, 921-926.	2.7	29
171	Erosion of W and deposition of C due to bombardment with D and CH3. Journal of Nuclear Materials, 1998, 258-263, 912-916.	2.7	12
172	Spectroscopic measurements of tungsten erosion in the ASDEX Upgrade divertor. Plasma Physics and Controlled Fusion, 1997, 39, 1487-1499.	2.1	75
173	Divertor tokamak operation at high densities on ASDEX Upgrade. Plasma Physics and Controlled Fusion, 1997, 39, B19-B38.	2.1	17
174	Study of gross and net erosion in the ASDEX upgrade divertor. Journal of Nuclear Materials, 1997, 241-243, 684-689.	2.7	27
175	The tungsten experiment in ASDEX Upgrade. Journal of Nuclear Materials, 1997, 241-243, 678-683.	2.7	25
176	Migration of tungsten eroded from divertor tiles in ASDEX Upgrade. Journal of Nuclear Materials, 1997, 241-243, 734-738.	2.7	14
177	Study of gross and net erosion in the ASDEX Upgrade divertor. Journal of Nuclear Materials, 1997, 241-243, 684-689.	2.7	5
178	Migration of tungsten eroded from divertor tiles in ASDEX Upgrade. Journal of Nuclear Materials, 1997, 241-243, 734-738.	2.7	5
179	The tungsten divertor experiment at ASDEX Upgrade. Plasma Physics and Controlled Fusion, 1996, 38, A165-A179.	2.1	82
180	Experimental investigations of high-Z materials in the ASDEX-Upgrade divertor. Journal of Nuclear Materials, 1995, 220-222, 231-234.	2.7	16

#	Article	IF	CITATIONS
181	Molecular impurities in ASDEX UPGRADE plasma discharges. Journal of Nuclear Materials, 1995, 220-222, 36-49.	2.7	35
182	Modelling of impurities in the ASDEX-Upgrade divertor with DIVIMP. Journal of Nuclear Materials, 1995, 220-222, 548-552.	2.7	14
183	Observation of Continuous Divertor Detachment inH-Mode Discharges in ASDEX Upgrade. Physical Review Letters, 1995, 74, 4217-4220.	7.8	152
184	The compatibility of high confinement times and complete divertor detachment in ASDEX-Upgrade. Plasma Physics and Controlled Fusion, 1995, 37, A37-A51.	2.1	80
185	Recent results from divertor operation in ASDEX Upgrade. Plasma Physics and Controlled Fusion, 1994, 36, B79-B92.	2.1	33
186	Erosion and redeposition in the ASDEX Upgrade divertor. Journal of Nuclear Materials, 1994, 210, 43-50.	2.7	49
187	Edge physics and H-mode studies in ASDEX Upgrade. Plasma Physics and Controlled Fusion, 1993, 35, B205-B214.	2.1	27
188	CH4and CO fuelling studies in the ASDEX tokamak. Nuclear Fusion, 1993, 33, 1591-1598.	3.5	3
189	Divertor retention for recycling impurities. Nuclear Fusion, 1992, 32, 1835-1844.	3.5	20
190	Determination of particle transport coefficients in ASDEX by gas modulation. Nuclear Fusion, 1992, 32, 217-237.	3.5	75
191	Sawtooth-free Ohmic discharges in ASDEX and aspects of neoclassical ion transport. Nuclear Fusion, 1991, 31, 2291-2304.	3.5	9
192	Impurity transport and neoclassical predictions. Plasma Physics and Controlled Fusion, 1991, 33, 1677-1695.	2.1	54
193	Boronization of ASDEX. Journal of Nuclear Materials, 1990, 176-177, 350-356.	2.7	19
194	Determination of impurity transport coefficients by harmonic analysis. Nuclear Fusion, 1990, 30, 2392-2396.	3.5	22
195	Physics of enhanced confinement with peaked and broad density profiles. Plasma Physics and Controlled Fusion, 1990, 32, 965-981.	2.1	16
196	Confinement regime transitions in ASDEX. Plasma Physics and Controlled Fusion, 1989, 31, 1629-1648.	2.1	18
197	Impurity accumulation in plasma regimes with high energy confinement. Journal of Nuclear Materials, 1989, 162-164, 14-23.	2.7	23
198	Improved Confinement in High-Density Ohmic Discharges in ASDEX. Physical Review Letters, 1988, 61, 1105-1108.	7.8	153

щ		IF	CITATIONS
#	ARTICLE	IF	CHAILONS
199	Long-pulse heating of ASDEX plasmas. Plasma Physics and Controlled Fusion, 1988, 30, 1443-1453.	2.1	17
200	Auxiliary heated multipellet-fuelled discharges in ASDEX and influence of density profile shape on confinement. Plasma Physics and Controlled Fusion, 1988, 30, 1611-1623.	2.1	27