Yinghui Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7385343/publications.pdf

Version: 2024-02-01

331670 345221 1,387 37 21 36 h-index citations g-index papers 37 37 37 2591 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	LncRNA Snhg5 Attenuates Status Epilepticus Induced Inflammation through Regulating NF-κΒ Signaling Pathway. Biological and Pharmaceutical Bulletin, 2022, 45, 86-93.	1.4	5
2	Long non-coding RNA H19 alleviates hippocampal damage in convulsive status epilepticus rats through the nuclear factor-kappaB signaling pathway. Bioengineered, 2022, 13, 12783-12793.	3.2	3
3	<p>Astaxanthin Attenuates Neuroinflammation in Status Epilepticus Rats by Regulating the ATP-P2X7R Signal</p> . Drug Design, Development and Therapy, 2020, Volume 14, 1651-1662.	4.3	19
4	<p>Long Non-Coding RNAs Regulate Inflammation in Diabetic Peripheral Neuropathy by Acting as ceRNAs Targeting miR-146a-5p</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 413-422.	2.4	16
5	Nanoparticle–microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 188-197.	3.3	46
6	MicroRNA-146a-5p Downregulates the Expression of P-Glycoprotein in Rats with Lithium–Pilocarpine-Induced Status Epilepticus. Biological and Pharmaceutical Bulletin, 2019, 42, 744-750.	1.4	25
7	The Neuroprotective Effect of Astaxanthin on Pilocarpine-Induced Status Epilepticus in Rats. Frontiers in Cellular Neuroscience, 2019, 13, 123.	3.7	43
8	Long Non-coding RNA KCNQ1OT1 Contributes to Antiepileptic Drug Resistance Through the miR-138-5p/ABCB1 Axis in vitro. Frontiers in Neuroscience, 2019, 13, 1358.	2.8	17
9	Inflammation: A Network in the Pathogenesis of Status Epilepticus. Frontiers in Molecular Neuroscience, 2018, 11, 341.	2.9	36
10	MicroRNA-146a: A Comprehensive Indicator of Inflammation and Oxidative Stress Status Induced in the Brain of Chronic T2DM Rats. Frontiers in Pharmacology, 2018, 9, 478.	3.5	56
11	The Protective Effect of Astaxanthin on Cognitive Function via Inhibition of Oxidative Stress and Inflammation in the Brains of Chronic T2DM Rats. Frontiers in Pharmacology, 2018, 9, 748.	3.5	67
12	Involvement of microRNA-146a in diabetic peripheral neuropathy through the regulation of inflammation. Drug Design, Development and Therapy, 2018, Volume 12, 171-177.	4.3	75
13	MicroRNA-298 Reverses Multidrug Resistance to Antiepileptic Drugs by Suppressing MDR1/P-gp Expression in vitro. Frontiers in Neuroscience, 2018, 12, 602.	2.8	28
14	Effect of Neuroinflammation on ABC Transporters: Possible Contribution to Refractory Epilepsy. CNS and Neurological Disorders - Drug Targets, 2018, 17, 728-735.	1.4	20
15	MiR-466b-1-3p regulates P-glycoprotein expression in rat cerebral microvascular endothelial cells. Neuroscience Letters, 2017, 645, 60-66.	2.1	6
16	Advances in Roles of miR-132 in the Nervous System. Frontiers in Pharmacology, 2017, 8, 770.	3.5	83
17	Potential Value of miR-221/222 as Diagnostic, Prognostic, and Therapeutic Biomarkers for Diseases. Frontiers in Immunology, 2017, 8, 56.	4.8	146
18	Advances in Autoimmune Epilepsy Associated with Antibodies, Their Potential Pathogenic Molecular Mechanisms, and Current Recommended Immunotherapies. Frontiers in Immunology, 2017, 8, 395.	4.8	17

#	Article	IF	Citations
19	Biodegradable and biocompatible cationic polymer delivering microRNA-221/222 promotes nerve regeneration after sciatic nerve crush. International Journal of Nanomedicine, 2017, Volume 12, 4195-4208.	6.7	22
20	Involvement of microRNA-146a in the Inflammatory Response of S tatus Epilepticus Rats. CNS and Neurological Disorders - Drug Targets, 2017, 16, 686-693.	1.4	10
21	Efficient and Non-Toxic Biological Response Carrier Delivering TNF- $\hat{l}\pm$ shRNA for Gene Silencing in a Murine Model of Rheumatoid Arthritis. Frontiers in Immunology, 2016, 7, 305.	4.8	19
22	microRNAs: Emerging Targets Regulating Oxidative Stress in the Models of Parkinson's Disease. Frontiers in Neuroscience, 2016, $10,298$.	2.8	36
23	Roles of Circular RNAs in Neurologic Disease. Frontiers in Molecular Neuroscience, 2016, 9, 25.	2.9	97
24	Long noncoding RNAs and Alzheimer's disease. Clinical Interventions in Aging, 2016, Volume 11, 867-872.	2.9	124
25	Thymoquinone Alleviates the Experimental Diabetic Peripheral Neuropathy by Modulation of Inflammation. Scientific Reports, 2016, 6, 31656.	3.3	39
26	Protective Effects of Thymoquinone Against Convulsant Activity Induced by Lithium-Pilocarpine in a model of Status Epilepticus. Neurochemical Research, 2016, 41, 3399-3406.	3.3	24
27	Inhibition of p38 mitogenâ€activated protein kinase signaling reduces multidrug transporter activity and antiâ€epileptic drug resistance in refractory epileptic rats. Journal of Neurochemistry, 2016, 136, 1096-1105.	3.9	32
28	Effect of pannexin-1 on the release of glutamate and cytokines in astrocytes. Journal of Clinical Neuroscience, 2016, 23, 135-141.	1.5	28
29	Hyperactivity and impaired attention in Gamma aminobutyric acid transporter subtype 1 gene knockout mice. Acta Neuropsychiatrica, 2015, 27, 368-374.	2.1	35
30	Pannexin-1 silencing inhibits the proliferation of U87-MG cells. Molecular Medicine Reports, 2015, 11, 3487-3492.	2.4	13
31	\hat{l}^3 -aminobutyric acid transporter-1 is involved in anxiety-like behaviors and cognitive function in knockout mice. Experimental and Therapeutic Medicine, 2015, 10, 653-658.	1.8	24
32	Involvement of p38 MAPK in the Drug Resistance of Refractory Epilepsy Through the Regulation Multidrug Resistance-Associated Protein 1. Neurochemical Research, 2015, 40, 1546-1553.	3.3	14
33	Beneficial effect of tetrandrine on refractory epilepsy via suppressing P-glycoprotein. International Journal of Neuroscience, 2015, 125, 703-710.	1.6	9
34	Neuroleptic malignant-like syndrome with a slight elevation of creatine-kinase levels and respiratory failure in a patient with Parkinson's disease. Patient Preference and Adherence, 2014, 8, 271.	1.8	9
35	Beneficial effect of TNF- $\hat{l}\pm$ inhibition on diabetic peripheral neuropathy. Journal of Neuroinflammation, 2013, 10, 69.	7.2	102
36	P-glycoprotein alters blood–brain barrier penetration of antiepileptic drugs in rats with medically intractable epilepsy. Drug Design, Development and Therapy, 2013, 7, 1447.	4.3	21

Yinghui Chen

#	Article	IF	CITATIONS
37	Inhibition of p38 MAPK diminishes doxorubicin-induced drug resistance associated with P-glycoprotein in human leukemia K562 cells. Medical Science Monitor, 2012, 18, BR383-BR388.	1.1	21