Antoine Depaulis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/738520/publications.pdf

Version: 2024-02-01

154 papers 12,060 citations

20817 60 h-index 29157 104 g-index

161 all docs

161 docs citations

times ranked

161

8035 citing authors

#	Article	IF	CITATIONS
1	Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature, 1995, 377, 424-428.	27.8	608
2	Pathophysiological mechanisms of genetic absence epilepsy in the rat. Progress in Neurobiology, 1998, 55, 27-57.	5.7	531
3	Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation. PLoS Biology, 2008, 6, e315.	5.6	462
4	Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience, 1999, 89, 717-729.	2.3	395
5	Deep Layer Somatosensory Cortical Neurons Initiate Spike-and-Wave Discharges in a Genetic Model of Absence Seizures. Journal of Neuroscience, 2007, 27, 6590-6599.	3.6	381
6	Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience, 2002, 112, 101-111.	2.3	376
7	Reelin Deficiency and Displacement of Mature Neurons, But Not Neurogenesis, Underlie the Formation of Granule Cell Dispersion in the Epileptic Hippocampus. Journal of Neuroscience, 2006, 26, 4701-4713.	3.6	295
8	Spontaneous paroxysmal electroclinical patterns in rat: A model of generalized non-convulsive epilepsy. Neuroscience Letters, 1982, 33, 97-101.	2.1	268
9	Involvement of intrathalamic GABAb neurotransmission in the control of absence seizures in the rat. Neuroscience, 1992, 48, 87-93.	2.3	255
10	Endogenous control of epilepsy: The nigral inhibitory system. Progress in Neurobiology, 1994, 42, 33-52.	5.7	218
11	A Model of Chronic Spontaneous Petit Malâ€like Seizures in the Rat: Comparison with Pentylenetetrazolâ€linduced Seizures. Epilepsia, 1984, 25, 326-331.	5.1	196
12	Involvement of brain opiate receptors in the immune-suppressive effect of morphine Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 7114-7117.	7.1	196
13	Enhancement of spike and wave discharges by GABAmimetic drugs in rats with spontaneous petit-mallike epilepsy. Neuroscience Letters, 1984, 44, 91-94.	2.1	195
14	High-frequency stimulation of the sub-thalamic nucleus suppresses absence seizures in the rat: comparison with neurotoxic lesions. Epilepsy Research, 1998, 31, 39-46.	1.6	190
15	Longitudinal neuronal organization of defensive reactions in the midbrain periaqueductal gray region of the rat. Experimental Brain Research, 1992, 90, 307-18.	1.5	186
16	Convergence of deep somatic and visceral nociceptive information onto a discrete ventrolateral midbrain periaqueductal gray region. Neuroscience, 1994, 61, 727-732.	2.3	173
17	Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy. Neurobiology of Disease, 2011, 42, 35-47.	4.4	169
18	Indentification of midbrain neurones mediating defensive behaviour in the rat by microinjections of excitatory amino acids. Behavioural Brain Research, 1985, 15, 107-119.	2.2	168

#	Article	IF	Citations
19	Spontaneous spike and wave discharges in thalamus and cortex in a rat model of genetic petit mal-like seizures. Experimental Neurology, 1987, 96, 127-136.	4.1	156
20	Kindling of audiogenic seizures in Wistar rats: An EEG study. Experimental Neurology, 1987, 97, 160-168.	4.1	154
21	GABAergic modulation of the analgesic effects of morphine microinjected in the ventral periaqueductal gray matter of the rat. Brain Research, 1987, 436, 223-228.	2.2	153
22	Evidence for a critical role of GABAergic transmission within the thalamus in the genesis and control of absence seizures in the rat. Brain Research, 1991, 545, 1-7.	2.2	149
23	PET evidence for a role of the basal ganglia in patients with ring chromosome 20 epilepsy. Neurology, 2004, 63, 73-77.	1.1	146
24	The role of basal ganglia in the control of generalized absence seizures. Epilepsy Research, 1998, 32, 213-223.	1.6	144
25	Mapping of spontaneous spike and wave discharges in Wistar rats with genetic generalized non-convulsive epilepsy. Brain Research, 1990, 523, 87-91.	2.2	140
26	Quiescence and hyporeactivity evoked by activation of cell bodies in the ventrolateral midbrain periaqueductal gray of the rat. Experimental Brain Research, 1994, 99, 75-83.	1.5	137
27	Low-voltage-activated calcium channel subunit expression in a genetic model of absence epilepsy in the rat. Molecular Brain Research, 2000, 75, 159-165.	2.3	130
28	Inflammatory changes during epileptogenesis and spontaneous seizures in a mouse model of mesiotemporal lobe epilepsy. Epilepsia, 2011, 52, 2315-2325.	5.1	121
29	Dopamine in the striatum modulates seizures in a genetic model of absence epilepsy in the rat. Neuroscience, 2000, 100, 335-344.	2.3	118
30	Parachlorophenylalanine-induced serotonin depletion increases offensive but not defensive aggression in male rats. Physiology and Behavior, 1986, 36, 653-658.	2.1	111
31	Protective effects of brain-derived neurotrophic factor on the development of hippocampal kindling in the rat. NeuroReport, 1995, 6, 1937-1941.	1.2	111
32	Fetal Exposure to GABA-Acting Antiepileptic Drugs Generates Hippocampal and Cortical Dysplasias. Epilepsia, 2007, 48, 684-693.	5.1	109
33	Suppressive effects of intranigral injection of muscimol in three models of generalized non-convulsive epilepsy induced by chemical agents. Brain Research, 1989, 498, 64-72.	2.2	104
34	Midbrain Periaqueductal Gray Control of Defensive Behavior in the Cat and the Rat., 1991,, 175-198.		103
35	The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies. Journal of Neuroscience Methods, 2016, 260, 159-174.	2.5	100
36	Inhibition of the substantia nigra suppresses absences and clonic seizures in audiogenic rats, but not tonic seizures: evidence for seizure specificity of the nigral control. Neuroscience, 2001, 105, 203-211.	2.3	98

#	Article	IF	CITATIONS
37	Characterization of pretentorial periaqueductal gray matter neurons mediating intraspecific defensive behaviors in the rat by microinjections of kainic acid. Brain Research, 1989, 486, 121-132.	2.2	96
38	Relationship between spike-wave discharges and vigilance levels in rats with spontaneous petit mal-like epilepsy. Neuroscience Letters, 1988, 94, 187-191.	2.1	89
39	Elicitation of intraspecific defensive behaviors in the rat by microinjection of picrotoxin, a \hat{I}^3 -aminobutyric acid antagonist, into the Midbrain Periaqueductal gray matter. Brain Research, 1986, 367, 87-95.	2.2	88
40	Evidence that activation of GABA receptors in the substantia nigra suppresses spontaneous spike-and-wave discharges in the rat. Brain Research, 1988, 448, 20-29.	2.2	88
41	Elicitation of intraspecific defence reactions in the rat from midbrain periaqueductal grey by microinjection of kainic acid, without neurotoxic effects. Neuroscience Letters, 1988, 88, 291-296.	2.1	88
42	NADPH oxidases as drug targets and biomarkers in neurodegenerative diseases: What is the evidence?. Free Radical Biology and Medicine, 2017, 112, 387-396.	2.9	88
43	Amygdala kindling in the rat: anxiogenic-like consequences. Neuroscience, 1996, 73, 971-978.	2.3	83
44	High temporal resolution for in vivo monitoring of neurotransmitters in awake epileptic rats using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection. Journal of Neuroscience Methods, 2004, 140, 29-38.	2.5	83
45	High-Precision Radiosurgical Dose Delivery by Interlaced Microbeam Arrays of High-Flux Low-Energy Synchrotron X-Rays. PLoS ONE, 2010, 5, e9028.	2.5	79
46	Ultrasonic vocalization (22–28 kHz) in a model of chronic pain, the arthritic rat. NeuroReport, 1996, 7, 581-584.	1.2	78
47	Differential Effects of Antiepileptic Drugs on Focal Seizures in the Intrahippocampal Kainate Mouse Model of Mesial Temporal Lobe Epilepsy. CNS Neuroscience and Therapeutics, 2016, 22, 497-506.	3.9	77
48	Selective increase of offensive behavior in the rat following intrahypothalamic 5,7-DHT-induced serotonin depletion. Behavioural Brain Research, 1988, 29, 85-91.	2,2	76
49	Brain-derived neurotrophic factor delays hippocampal kindling in the rat. Neuroscience, 2000, 100, 777-788.	2.3	76
50	Involvement of nigral glutamatergic inputs in the control of seizures in a genetic model of absence epilepsy in the rat. Neuroscience, 1996, 71, 721-728.	2.3	74
51	A Genetic Switch for Epilepsy in Adult Mice. Journal of Neuroscience, 2004, 24, 10568-10578.	3.6	74
52	Effects of drugs affecting dopaminergic neurotransmission in rats with spontaneous petit mal-like seizures. Neuropharmacology, 1988, 27, 269-274.	4.1	73
53	Overexpression of neuropeptide Y induced by brain-derived neurotrophic factor in the rat hippocampus is long lasting. European Journal of Neuroscience, 2000, 12, 595-605.	2.6	73
54	Neuroprotective effects of chronic estradiol benzoate treatment on hippocampal cell loss induced by status epilepticus in the female rat. Neuroscience Letters, 2000, 281, 79-82.	2.1	70

#	Article	IF	CITATIONS
55	Deep brain stimulation in epilepsy: what is next?. Current Opinion in Neurology, 2010, 23, 177-182.	3.6	70
56	Effects of drugs affecting noradrenergic neurotransmission in rats with spontaneous petit mal-like seizures. European Journal of Pharmacology, 1987, 135, 397-402.	3.5	69
57	Role of the subthalamo-nigral input in the control of amygdala-kindled seizures in the rat. Brain Research, 1998, 807, 78-83.	2.2	67
58	Emerging Principles of Organization of the Midbrain Periaqueductal Gray Matter., 1991,, 1-8.		67
59	Anxiogenic-like consequences in animal models of complex partial seizures. Neuroscience and Biobehavioral Reviews, 1997, 21, 767-774.	6.1	66
60	Controlling seizures is not controlling epilepsy: A parametric study of deep brain stimulation for epilepsy. Neurobiology of Disease, 2007, 27, 292-300.	4.4	66
61	Audiogenic seizures in Wistar rats before and after repeated auditory stimuli: clinical, pharmacological, and electroencephalographic studies. Journal of Neural Transmission, 1988, 72, 235-244.	2.8	65
62	Specific In Vivo Staining of Astrocytes in the Whole Brain after Intravenous Injection of Sulforhodamine Dyes. PLoS ONE, 2012, 7, e35169.	2.5	65
63	Epilepsy in Dcx Knockout Mice Associated with Discrete Lamination Defects and Enhanced Excitability in the Hippocampus. PLoS ONE, 2008, 3, e2473.	2.5	63
64	Genetic Models of Absence Epilepsy in the Rat. , 2006, , 233-248.		58
65	Seizure expression, behavior, and brain morphology differences in colonies of Genetic Absence Epilepsy Rats from Strasbourg. Epilepsia, 2014, 55, 1959-1968.	5.1	57
66	Do seizures and epileptic activity worsen epilepsy and deteriorate cognitive function?. Epilepsia, 2013, 54, 14-21.	5.1	56
67	Are rats with genetic absence epilepsy behaviorally impaired?. Epilepsy Research, 1991, 9, 97-104.	1.6	55
68	Involvement of the nigral output pathways in the inhibitory control of the substantia nigra over generalized non-convulsive seizures in the rat. Neuroscience, 1990, 39, 339-349.	2.3	54
69	Manipulating theÂepileptic brain using stimulation: aÂreview ofÂexperimental andÂclinical studies. Epileptic Disorders, 2009, 11, 100-112.	1.3	54
70	Involvement of the Thalamic Parafascicular Nucleus in Mesial Temporal Lobe Epilepsy. Journal of Neuroscience, 2010, 30, 16523-16535.	3.6	54
71	Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy. Cell Stem Cell, 2021, 28, 2104-2121.e10.	11.1	54
72	Biphasic effects of Ro 15-1788 on spontaneous petit mal-like seizures in rats. European Journal of Pharmacology, 1984, 102, 355-359.	3.5	53

#	Article	IF	CITATIONS
73	Glutamate Receptor Antagonists and Benzodiazepine Inhibit the Progression of Granule Cell Dispersion in a Mouse Model of Mesial Temporal Lobe Epilepsy. Epilepsia, 2005, 46, 193-202.	5.1	53
74	Pathophysiology of absence epilepsy: Insights from genetic models. Neuroscience Letters, 2018, 667, 53-65.	2.1	51
7 5	Activation of <scp>mTOR</scp> signaling pathway is secondary to neuronal excitability in a mouse model of mesioâ€temporal lobe epilepsy. European Journal of Neuroscience, 2015, 41, 976-988.	2.6	49
76	Different representations of inescapable noxious stimuli in the periaqueductal gray and upper cervical spinal cord of freely moving rats. Neuroscience Letters, 2001, 313, 17-20.	2.1	48
77	GABAergic influences on defensive fighting in rats. Pharmacology Biochemistry and Behavior, 1982, 17, 451-456.	2.9	47
78	Ontogeny of spontaneous petit mal-like seizures in Wistar rats. Developmental Brain Research, 1986, 30, 85-87.	1.7	47
79	Endogenous Control of Hippocampal Epileptogenesis: A Molecular Cascade Involving Brain-Derived Neurotrophic Factor and Neuropeptide Y. Epilepsia, 2000, 41, S127-S133.	5.1	47
80	Neuropeptide Y and epilepsy: varying effects according to seizure type and receptor activation. Peptides, 2001, 22, 529-539.	2.4	46
81	Effects of cholinergic drugs on genetic absence seizures in rats. European Journal of Pharmacology, 1993, 234, 263-268.	3.5	44
82	Dentate gyrus and hilus transection blocks seizure propagation and granule cell dispersion in a mouse model for mesial temporal lobe epilepsy. Hippocampus, 2011, 21, 334-343.	1.9	43
83	Interhemispheric desynchronization of spontaneous spike-wave discharges by corpus callosum transection in rats with petit mal-like epilepsy. Epilepsy Research, 1989, 4, 8-13.	1.6	42
84	Building Up Absence Seizures in the Somatosensory Cortex: From Network to Cellular Epileptogenic Processes. Cerebral Cortex, 2017, 27, 4607-4623.	2.9	42
85	Short-term changes in bilateral hippocampal coherence precede epileptiform events. NeuroImage, 2007, 38, 138-149.	4.2	41
86	Suppression of spontaneous generalized non-convulsive seizures in the rat by microinjection of GABA antagonists into the superior colliculus. Epilepsy Research, 1990, 5, 192-198.	1.6	39
87	WONOEP appraisal: Biomarkers of epilepsyâ€associated comorbidities. Epilepsia, 2017, 58, 331-342.	5.1	39
88	Effects of gamma-hydroxybutyrate and gamma-butyrolactone derivatives on spontaneous generalized non-convulsive seizures in the rat. Neuropharmacology, 1988, 27, 683-689.	4.1	36
89	Animal models to study aetiopathology of epilepsy: what are the features to model?. Epileptic Disorders, 2012, 14, 217-225.	1.3	36
90	Diazepam dissociates the analgesic and aversive effects of periaqueductal gray stimulation in the rat. Brain Research, 1987, 423, 395-398.	2.2	35

#	Article	IF	Citations
91	Kindling of Audiogenic Seizures in the Rat. International Journal of Neuroscience, 1987, 36, 167-176.	1.6	34
92	Positive transfer of audiogenic kindling to electrical hippocampal kindling in rats. Epilepsy Research, 1992, 11, 159-166.	1.6	34
93	Neuropeptide Y delays hippocampal kindling in the rat. Hippocampus, 2003, 13, 557-560.	1.9	34
94	Occurrence of the Synthetic Analgesic Tramadol in an African Medicinal Plant. Angewandte Chemie - International Edition, 2013, 52, 11780-11784.	13.8	34
95	Mesopontine cholinergic control over generalized non-convulsive seizures in a genetic model of absence epilepsy in the rat. Neuroscience, 1995, 69, 1183-1193.	2.3	33
96	Evidence for the involvement of the pallidum in the modulation of seizures in a genetic model of absence epilepsy in the rat. Neuroscience Letters, 1999, 265, 131-134.	2.1	33
97	High-Throughput LC–MS/MS Proteomic Analysis of a Mouse Model of Mesiotemporal Lobe Epilepsy Predicts Microglial Activation Underlying Disease Development. Journal of Proteome Research, 2016, 15, 1546-1562.	3.7	33
98	Potentiation of \hat{I}^3 -vinyl GABA (vigabatrin) effects by glycine. European Journal of Pharmacology, 1990, 182, 109-115.	3.5	32
99	Induced down-regulation of neuropeptide Y-Y1 receptors delays initiation of kindling. European Journal of Neuroscience, 2003, 18, 768-774.	2.6	32
100	Evidence for a Role of the Parafascicular Nucleus of the Thalamus in the Control of Epileptic Seizures by the Superior Colliculus. Epilepsia, 2005, 46, 141-145.	5.1	32
101	The control of seizures by the basal ganglia? A review of experimental data. Epileptic Disorders, 2002, 4 Suppl 3, S61-72.	1.3	30
102	Elicitation of conspecific attack or defense in the male rat by intraventricular injection of a GABA agonist or antagonist. Physiology and Behavior, 1985, 35, 447-453.	2.1	29
103	Comparative study of five antiepileptic drugs on a translational cognitive measure in the rat: relationship to antiepileptic property. Psychopharmacology, 2010, 207, 513-527.	3.1	29
104	Induction of mouse-killing in the rat by intraventricular injection of a GABA-Agonist. Physiology and Behavior, 1983, 30, 383-388.	2.1	28
105	The GABAA receptor complex in experimental absence seizures in rat: An autoradiographic study. Neuroscience Letters, 1992, 140, 9-12.	2.1	28
106	BDNF and epilepsy – the bad could turn out to be good. Trends in Neurosciences, 2001, 24, 318-319.	8.6	28
107	The GABAergic nigro-collicular pathway is not involved in the inhibitory control of audiogenic seizures in the rat. Neuroscience Letters, 1990, 111, 269-274.	2.1	25
108	22–28 Khz ultrasonic vocalizations associated with defensive reactions in male rats do not result from fear or aversion. Psychopharmacology, 1993, 111, 190-194.	3.1	25

#	Article	IF	Citations
109	Neural Adaptation to Responsive Stimulation: A Comparison of Auditory and Deep Brain Stimulation in a Rat Model of Absence Epilepsy. Brain Stimulation, 2013, 6, 241-247.	1.6	25
110	Sensory coding is impaired in rat absence epilepsy. Journal of Physiology, 2019, 597, 951-966.	2.9	25
111	Synchrotron X-ray interlaced microbeams suppress paroxysmal oscillations in neuronal networks initiating generalized epilepsy. Neurobiology of Disease, 2013, 51, 152-160.	4.4	24
112	Glial responses during epileptogenesis in Mus musculus point to potential therapeutic targets. PLoS ONE, 2018, 13, e0201742.	2.5	24
113	Intrathalamic injections of \hat{I}^3 -hydroxybutyric acid increase genetic absence seizures in rats. Neuroscience Letters, 1991, 125, 19-21.	2.1	23
114	Nucleus basalis lesions suppress spike and wave discharges in rats with spontaneous absence-epilepsy. Neuroscience, 1994, 59, 531-539.	2.3	23
115	Suppression of Absence Seizures by Electrical and Pharmacological Activation of the Caudal Superior Colliculus in a Genetic Model of Absence Epilepsy in the Rat. Experimental Neurology, 2002, 177, 503-514.	4.1	23
116	Animal models for mesiotemporal lobe epilepsy: The end of a misunderstanding?. Revue Neurologique, 2015, 171, 217-226.	1.5	22
117	Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing. Materials Science and Engineering C, 2015, 46, 25-31.	7.3	22
118	A microcomputer method for behavioural data acquisition and subsequent analysis. Pharmacology Biochemistry and Behavior, 1983, 19, 729-732.	2.9	21
119	Reciprocal positive transfer between kindling of audiogenic seizures and electrical kindling of inferior colliculus. Epilepsy Research, 1993, 15, 133-139.	1.6	21
120	Assessing Susceptibility to Epilepsy in Three Rat Strains Using Brain Metabolic Profiling Based on HRMAS NMR Spectroscopy and Chemometrics. Journal of Proteome Research, 2015, 14, 2177-2189.	3.7	21
121	Bidirectional effects of beta-carbolines in rats with spontaneous petit mal-like scizures. Brain Research Bulletin, 1987, 19, 327-335.	3.0	19
122	Synchrotron X-ray microbeams: A promising tool for drug-resistant epilepsy treatment. Physica Medica, 2015, 31, 607-614.	0.7	19
123	Opposite effects of agonist and inverse agonist ligands of benzodiazepine receptor on self-defensive and submissive postures in the rat. Psychopharmacology, 1991, 103, 56-61.	3.1	18
124	Synchrotron X-ray microtransections: a non invasive approach for epileptic seizures arising from eloquent cortical areas. Scientific Reports, 2016, 6, 27250.	3.3	18
125	Relationship between mousekilling and conspecific aggression in the male rat. Aggressive Behavior, 1983, 9, 259-268.	2.4	17
126	Relationship between analgesia and cardiovascular changes induced by electrical stimulation of the mesencephalic periaqueductal gray matter in the rat. Brain Research, 1988, 451, 326-332.	2,2	16

#	Article	lF	CITATIONS
127	Gabaergic modulation of mouse-killing in the rat. Psychopharmacology, 1984, 83, 367-372.	3.1	15
128	Lesions of noradrenergic neurons in rats with spontaneous generalized non-convulsive epilepsy. Epilepsy Research, 1991, 9, 79-85.	1.6	15
129	Right temporal cerebral dysfunction heralds symptoms of acute mountain sickness. Journal of Neurology, 2007, 254, 359-363.	3.6	15
130	Revisiting hippocampal sclerosis in mesial temporal lobe epilepsy according to the "two-hit― hypothesis. Revue Neurologique, 2015, 171, 227-235.	1.5	15
131	Activation of GABA A receptors controls mesiotemporal lobe epilepsy despite changes in chloride transporters expression: In vivo and in silico approach. Experimental Neurology, 2016, 284, 11-28.	4.1	15
132	Anticonvulsant effect of muscimol injected into the thalamus of spontaneously epileptic Mongolian gerbils. Brain Research, 1989, 487, 363-367.	2.2	14
133	Dorsal tegmentum kindling in rats. Neuroscience Letters, 1992, 134, 284-287.	2.1	14
134	Is ictal dystonia associated with an inhibitory effect on seizure propagation in focal epilepsies?. Epilepsy Research, 2012, 99, 274-280.	1.6	14
135	In vivo γâ€aminobutyric acid increase as a biomarker of the epileptogenic zone: An unbiased metabolomics approach. Epilepsia, 2021, 62, 163-175.	5.1	12
136	Long-term modifications of epileptogenesis and hippocampal rhythms after prolonged hyperthermic seizures in the mouse. Neurobiology of Disease, 2014, 69, 156-168.	4.4	11
137	Experimental Treatment Options in Absence Epilepsy. Current Pharmaceutical Design, 2018, 23, 5577-5592.	1.9	11
138	Modifications of local cerebral glucose utilization in thalamic structures following injection of a dopaminergic agonist in the nucleus accumbens—involvement in antiepileptic effects?. Experimental Neurology, 2004, 188, 452-460.	4.1	10
139	Identification and characterization of outcome measures reported in animal models of epilepsy: Protocol for a systematic review of the literatureâe"A <scp>TASK</scp> 2 report of the <scp>AES</scp> / <scp>ILAE</scp> Translational Task Force of the ILAE. Epilepsia, 2017, 58, 68-77.	5.1	8
140	Genetic Models of Absence Epilepsy in Rats and Mice. , 2017, , 455-471.		8
141	Early reduced dopaminergic tone mediated by D3 receptor and dopamine transporter in absence epileptogenesis. Epilepsia, 2019, 60, 2128-2140.	5.1	8
142	Neurovascular multiparametric MRI defines epileptogenic and seizure propagation regions in experimental mesiotemporal lobe epilepsy. Epilepsia, 2021, 62, 1244-1255.	5.1	8
143	Aberrant neuronal connectivity in the cortex drives generation of seizures in rat absence epilepsy. Brain, 2022, 145, 1978-1991.	7.6	8
144	Hypothalamic Response to Experimental Allergic Encephalomyelitis: Role of Substance P. NeuroImmunoModulation, 2004, 11, 28-35.	1.8	6

#	Article	IF	CITATIONS
145	In Silico Dynamic Molecular Interaction Networks for the Discovery of New Therapeutic Targets. Current Pharmaceutical Design, 2010, 16, 2241-2251.	1.9	6
146	Immediate effects of 14 non maoi antidepressants in rats with spontaneous petit mal-like seizures. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1990, 14, 261-270.	4.8	5
147	Opposite effects of pentylenetetrazol on self-defensive and submissive postures in the rat. Psychopharmacology, 1992, 107, 457-460.	3.1	3
148	Longâ€term effects of febrile status epilepticus: What animal models can tell us?. Epilepsia, 2009, 50, 27-28.	5.1	3
149	Early alterations of the neuronal network processing whiskerâ€related sensory signal during absence epileptogenesis. Epilepsia, 2022, 63, 497-509.	5.1	3
150	Quantitative analysis and computer simulation of oxytocin-neurophysin processing in the rat neurohypophysis. Neurochemistry International, 1991, 19, 297-312.	3.8	2
151	Radiation Therapy Using Synchrotron Radiation: Preclinical Studies Toward Clinical Trials. Synchrotron Radiation News, 2011, 24, 8-12.	0.8	2
152	La souris MTLE: unÂmodÃ"le validé pourÂl'évaluation deÂmolécules anti-épileptiques pourÂleÂtraitemen deÂl'épilepsie mésiotemporale. Epilepsies, 2009, 21, 184-192.	t _{0.0}	1
153	Protective Effects of Brain-Derived Neurotrophic Factor in Hippocampal Kindling. Advances in Behavioral Biology, 1998, , 409-420.	0.2	1
154	Control of Epileptic Seizures. Advances in Behavioral Biology, 2002, , 169-178.	0.2	0