
Johannes Buchner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7384899/publications.pdf Version: 2024-02-01

IOHANNES BUCHNER

#	Article	IF	CITATIONS
1	The eROSITA Final Equatorial-Depth Survey (eFEDS). Astronomy and Astrophysics, 2022, 661, A9.	5.1	6
2	The eROSITA Final Equatorial-Depth Survey (eFEDS). Astronomy and Astrophysics, 2022, 661, A15.	5.1	17
3	The eROSITA Final Equatorial-Depth Survey (eFEDS). Astronomy and Astrophysics, 2022, 661, A8.	5.1	8
4	The eROSITA Final Equatorial-Depth Survey (eFEDS). Astronomy and Astrophysics, 2022, 661, A2.	5.1	54
5	Systematic evaluation of variability detection methods for eROSITA. Astronomy and Astrophysics, 2022, 661, A18.	5.1	6
6	Establishing the X-ray source detection strategy for eROSITA with simulations. Astronomy and Astrophysics, 2022, 661, A27.	5.1	18
7	The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data. Astrophysical Journal, Supplement Series, 2022, 259, 35.	7.7	405
8	The eROSITA Final Equatorial-Depth Survey (eFEDS). Astronomy and Astrophysics, 2022, 661, A3.	5.1	50
9	The eROSITA Final Equatorial-Depth Survey (eFEDS). Astronomy and Astrophysics, 2022, 661, A5.	5.1	41
10	The complex time and energy evolution of quasi-periodic eruptions in eRO-QPE1. Astronomy and Astrophysics, 2022, 662, A49.	5.1	14
11	The eROSITA Final Equatorial-Depth Survey (eFEDS). Astronomy and Astrophysics, 2022, 661, A4.	5.1	23
12	The eROSITA Final Equatorial Depth Survey (eFEDS). Astronomy and Astrophysics, 2022, 661, A1.	5.1	144
13	An Intuition for Physicists: Information Gain From Experiments. Research Notes of the AAS, 2022, 6, 89.	0.7	3
14	Nested sampling for physical scientists. Nature Reviews Methods Primers, 2022, 2, .	21.2	40
15	First constraints on the AGN X-ray luminosity function at <i>z</i> ~ 6 from an eROSITA-detected quasar. Astronomy and Astrophysics, 2021, 647, A5.	5.1	26
16	AT 2019avd: a novel addition to the diverse population of nuclear transients. Astronomy and Astrophysics, 2021, 647, A9.	5.1	21
17	Dalek: A Deep Learning Emulator for TARDIS. Astrophysical Journal Letters, 2021, 910, L23.	8.3	12
18	UltraNest - a robust, general purpose Bayesian inference engine. Journal of Open Source Software, 2021, 6, 3001.	4.6	131

JOHANNES BUCHNER

#	Article	IF	CITATIONS
19	X-ray quasi-periodic eruptions from two previously quiescent galaxies. Nature, 2021, 592, 704-707.	27.8	82
20	The eROSITA Final Equatorial-Depth Survey (eFEDS). Astronomy and Astrophysics, 2021, 649, L11.	5.1	7
21	Bayesian X-ray Analysis (BXA) v4.0. Journal of Open Source Software, 2021, 6, 3045.	4.6	3
22	Beyond Simple AGN Unification with Chandra-observed 3CRR Sources at 0.5 < z < 1. Astrophysical Journal, 2021, 913, 134.	4.5	11
23	Probabilistic Reconstruction of Type Ia Supernova SN 2002bo. Astrophysical Journal Letters, 2021, 916, L14.	8.3	5
24	Physically motivated X-ray obscurer models. Astronomy and Astrophysics, 2021, 651, A58.	5.1	22
25	Inferring the morphology of AGN torus using X-ray spectra: a reliability study. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5485-5510.	4.4	7
26	Relativistic accretion disc reflection in AGN X-ray spectra at <i>z</i> = 0.5–4: a study of four <i>Chandra</i> Deep Fields. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5284-5298.	4.4	9
27	The final SDSS-IV/SPIDERS X-ray point source spectroscopic catalogue. Astronomy and Astrophysics, 2020, 636, A97.	5.1	27
28	Probabilistic Detection of Spectral Line Components. Astrophysical Journal Letters, 2020, 892, L32.	8.3	9
29	SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 2020, 17, 261-272.	19.0	17,539
30	Exploring the diversity of Type 1 active galactic nuclei identified in SDSS-IV/SPIDERS. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3580-3601.	4.4	21
31	Quantifying the Bayesian Evidence for a Planet in Radial Velocity Data. Astronomical Journal, 2020, 159, 73.	4.7	42
32	The MAVERIC Survey: Chandra/ACIS Catalog of Faint X-Ray Sources in 38 Galactic Globular Clusters. Astrophysical Journal, 2020, 901, 57.	4.5	26
33	The Sloan Digital Sky Survey Reverberation Mapping Project: the XMM-Newton X-Ray Source Catalog and Multiband Counterparts. Astrophysical Journal, Supplement Series, 2020, 250, 32.	7.7	15
34	Collaborative Nested Sampling: Big Data versus Complex Physical Models. Publications of the Astronomical Society of the Pacific, 2019, 131, 108005.	3.1	80
35	Active galactic nuclei and their large-scale structure: an eROSITA mock catalogue. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2005-2029.	4.4	40
36	The Accretion History of AGNs. I. Supermassive Black Hole Population Synthesis Model. Astrophysical Journal, 2019, 871, 240.	4.5	92

JOHANNES BUCHNER

#	Article	IF	CITATIONS
37	On the Prevalence of Supermassive Black Holes over Cosmic Time. Astrophysical Journal, 2019, 874, 117.	4.5	15
38	X-ray spectral and eclipsing model of the clumpy obscurer in active galactic nuclei. Astronomy and Astrophysics, 2019, 629, A16.	5.1	46
39	Finding counterparts for all-sky X-ray surveys with Nway: a Bayesian algorithm for cross-matching multiple catalogues. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4937-4955.	4.4	108
40	Cosmic evolution and metal aversion in superluminous supernova host galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1258-1285.	4.4	120
41	New Spectral Model for Constraining Torus Covering Factors from Broadband X-Ray Spectra of Active Galactic Nuclei. Astrophysical Journal, 2018, 854, 42.	4.5	161
42	Low-frequency View of GW170817/GRB 170817A with the Giant Metrewave Radio Telescope. Astrophysical Journal, 2018, 867, 57.	4.5	79
43	XZ: Deriving redshifts from X-ray spectra of obscured AGN. Astronomy and Astrophysics, 2018, 618, A66.	5.1	19
44	X-UDS: The <i>Chandra</i> Legacy Survey of the UKIDSS Ultra Deep Survey Field. Astrophysical Journal, Supplement Series, 2018, 236, 48.	7.7	55
45	X-Ray Bolometric Corrections for Compton-thick Active Galactic Nuclei. Astrophysical Journal, 2017, 844, 10.	4.5	24
46	ALMA and GMRT Constraints on the Off-axis Gamma-Ray Burst 170817A from the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L21.	8.3	49
47	Galaxy gas as obscurer – I. GRBs x-ray galaxies and find an \$N_{{m H}^{3}propto M_{star }\$ relation. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4545-4566.	4.4	36
48	X-ray constraints on the fraction of obscured active galactic nuclei at high accretion luminosities. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3232-3251.	4.4	32
49	Galaxy gas as obscurer – II. Separating the galaxy-scale and nuclear obscurers of active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4348-4362.	4.4	63
50	The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release. Astronomy and Astrophysics, 2017, 597, A79.	5.1	337
51	SPIDERS: selection of spectroscopic targets using AGN candidates detected in all-sky X-ray surveys. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1065-1095.	4.4	38
52	A spectroscopic survey of X-ray-selected AGNs in the northern XMM-XXL field. Monthly Notices of the Royal Astronomical Society, 2016, 457, 110-132.	4.4	81
53	X-ray spectral properties of the AGN sample in the northern XMM-XXL field. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1602-1625.	4.4	71
54	A statistical test for Nested Sampling algorithms. Statistics and Computing, 2016, 26, 383-392.	1.5	100

JOHANNES BUCHNER

#	Article	IF	CITATIONS
55	OBSCURATION-DEPENDENT EVOLUTION OF ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2015, 802, 89.	4.5	214
56	X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astronomy and Astrophysics, 2014, 564, A125.	5.1	963
57	CANDELS/GOODS-S, CDFS, AND ECDFS: PHOTOMETRIC REDSHIFTS FOR NORMAL AND X-RAY-DETECTED GALAXIES. Astrophysical Journal, 2014, 796, 60.	4.5	117
58	Relativistic reflection from accretion disks in the population of Active Galactic Nuclei at z=0.5–4. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	7
59	Dramatic X-ray spectral variability of a Compton-thick type-1 QSO at z â^¼ 1. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	1