Hirohito Yamaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7384575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PARP Inhibitor Upregulates PD-L1 Expression and Enhances Cancer-Associated Immunosuppression. Clinical Cancer Research, 2017, 23, 3711-3720.	7.0	710
2	CHOP Is Involved in Endoplasmic Reticulum Stress-induced Apoptosis by Enhancing DR5 Expression in Human Carcinoma Cells. Journal of Biological Chemistry, 2004, 279, 45495-45502.	3.4	682
3	Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nature Communications, 2016, 7, 12632.	12.8	648
4	ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nature Cell Biology, 2008, 10, 138-148.	10.3	590
5	Deubiquitination and Stabilization of PD-L1 by CSN5. Cancer Cell, 2016, 30, 925-939.	16.8	538
6	Epithelial–Mesenchymal Transition Induced by TNF-α Requires NF-κB–Mediated Transcriptional Upregulation of Twist1. Cancer Research, 2012, 72, 1290-1300.	0.9	406
7	Eradication of Triple-Negative Breast Cancer Cells by Targeting Glycosylated PD-L1. Cancer Cell, 2018, 33, 187-201.e10.	16.8	381
8	The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene, 2001, 20, 7779-7786.	5.9	361
9	Regulation and Role of EZH2 in Cancer. Cancer Research and Treatment, 2014, 46, 209-222.	3.0	243
10	Molecular Cloning and Characterization of Bif-1. Journal of Biological Chemistry, 2001, 276, 20559-20565.	3.4	214
11	Lipidic Pore Formation by the Concerted Action of Proapoptotic BAX and tBID. Journal of Biological Chemistry, 2004, 279, 30081-30091.	3.4	210
12	Blocking c-Met–mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nature Medicine, 2016, 22, 194-201.	30.7	189
13	Activity of Suberoylanilide Hydroxamic Acid Against Human Breast Cancer Cells with Amplification of Her-2. Clinical Cancer Research, 2005, 11, 6382-6389.	7.0	181
14	Loss of Bif-1 Suppresses Bax/Bak Conformational Change and Mitochondrial Apoptosis. Molecular and Cellular Biology, 2005, 25, 9369-9382.	2.3	167
15	Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nature Reviews Clinical Oncology, 2022, 19, 287-305.	27.6	155
16	TYRO3 induces anti–PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis. Journal of Clinical Investigation, 2021, 131, .	8.2	135
17	MET Inhibitors Promote Liver Tumor Evasion of the Immune Response by Stabilizing PDL1. Gastroenterology, 2019, 156, 1849-1861.e13.	1.3	131
18	A perspective on anti-EGFR therapies targeting triple-negative breast cancer. American Journal of Cancer Research, 2016, 6, 1609-23.	1.4	121

Нігоніто Yamaguchi

#	Article	IF	CITATIONS
19	COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport. Biochemical and Biophysical Research Communications, 2010, 399, 498-504.	2.1	116
20	PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response. Journal of Clinical Investigation, 2015, 125, 4529-4543.	8.2	114
21	Regulation of Bax Activation and Apoptotic Response to Microtubule-damaging Agents by p53 Transcription-dependent and -independent Pathways. Journal of Biological Chemistry, 2004, 279, 39431-39437.	3.4	112
22	p53 Acetylation Is Crucial for Its Transcription-independent Proapoptotic Functions. Journal of Biological Chemistry, 2009, 284, 11171-11183.	3.4	111
23	The Translocon Sec61β Localized in the Inner Nuclear Membrane Transports Membrane-embedded ECF Receptor to the Nucleus. Journal of Biological Chemistry, 2010, 285, 38720-38729.	3.4	107
24	Caspase-Independent Cell Death Is Involved in the Negative Effect of EGF Receptor Inhibitors on Cisplatin in Non–Small Cell Lung Cancer Cells. Clinical Cancer Research, 2013, 19, 845-854.	7.0	93
25	Anoikis, Initiated by Mcl-1 Degradation and Bim Induction, Is Deregulated during Oncogenesis. Cancer Research, 2007, 67, 10744-10752.	0.9	88
26	Regulation of 17-AAG—induced apoptosis: role of Bcl-2, Bcl-xL, and Bax downstream of 17-AAG—mediated down-regulation of Akt, Raf-1, and Src kinases. Blood, 2003, 102, 269-275.	1.4	87
27	Bcl-XL Protects BimEL-induced Bax Conformational Change and Cytochrome c Release Independent of Interacting with Bax or BimEL. Journal of Biological Chemistry, 2002, 277, 41604-41612.	3.4	85
28	Membrane-bound Trafficking Regulates Nuclear Transport of Integral Epidermal Growth Factor Receptor (EGFR) and ErbB-2. Journal of Biological Chemistry, 2012, 287, 16869-16879.	3.4	72
29	Tissue Transglutaminase Serves as an Inhibitor of Apoptosis by Cross-Linking Caspase 3 in Thapsigargin-Treated Cells. Molecular and Cellular Biology, 2006, 26, 569-579.	2.3	70
30	BikDD Eliminates Breast Cancer Initiating Cells and Synergizes with Lapatinib for Breast Cancer Treatment. Cancer Cell, 2011, 20, 341-356.	16.8	67
31	AKT1 Inhibits Epithelial-to-Mesenchymal Transition in Breast Cancer through Phosphorylation-Dependent Twist1 Degradation. Cancer Research, 2016, 76, 1451-1462.	0.9	65
32	CDK2-mediated site-specific phosphorylation of EZH2 drives and maintains triple-negative breast cancer. Nature Communications, 2019, 10, 5114.	12.8	64
33	Oncogenic signaling pathways associated with immune evasion and resistance to immune checkpoint inhibitors in cancer. Seminars in Cancer Biology, 2020, 65, 51-64.	9.6	63
34	Arsenic trioxide (As2O3) induces apoptosis through activation of Bax in hematopoietic cells. Oncogene, 2005, 24, 3339-3347.	5.9	61
35	A Potential Role of YAP/TAZ in the Interplay Between Metastasis and Metabolic Alterations. Frontiers in Oncology, 2020, 10, 928.	2.8	61
36	Targeting PKCδas a Therapeutic Strategy against Heterogeneous Mechanisms of EGFR Inhibitor Resistance in EGFR-Mutant Lung Cancer. Cancer Cell, 2018, 34, 954-969.e4.	16.8	56

Нігоніто Үамадисні

#	Article	IF	CITATIONS
37	Endophilin B1/Bif-1 Stimulates BAX Activation Independently from Its Capacity to Produce Large Scale Membrane Morphological Rearrangements. Journal of Biological Chemistry, 2009, 284, 4200-4212.	3.4	52
38	EGFR and c-MET Cooperate to Enhance Resistance to PARP Inhibitors in Hepatocellular Carcinoma. Cancer Research, 2019, 79, 819-829.	0.9	52
39	Implantation-Dependent Expression of Trophinin by Maternal Fallopian Tube Epithelia during Tubal Pregnancies. American Journal of Pathology, 2003, 163, 2211-2219.	3.8	50
40	Regulation of Ubiquitination-Mediated Protein Degradation by Survival Kinases in Cancer. Frontiers in Oncology, 2012, 2, 15.	2.8	49
41	Ovarian progesterone suppresses depression and anxiety-like behaviors by increasing the Lactobacillus population of gut microbiota in ovariectomized mice. Neuroscience Research, 2021, 168, 76-82.	1.9	43
42	FOXO3a-Dependent Mechanism of E1A-Induced Chemosensitization. Cancer Research, 2011, 71, 6878-6887.	0.9	42
43	The role of PRMT1 in EGFR methylation and signaling in MDA-MB-468 triple-negative breast cancer cells. Breast Cancer, 2018, 25, 74-80.	2.9	40
44	GSK3β inactivation promotes the oncogenic functions of EZH2 and enhances methylation of H3K27 in human breast cancers. Oncotarget, 2016, 7, 57131-57144.	1.8	35
45	A novel hTERT promoter–driven E1A therapeutic for ovarian cancer. Molecular Cancer Therapeutics, 2009, 8, 2375-2382.	4.1	34
46	Targeting the IKKβ/mTOR/VEGF Signaling Pathway as a Potential Therapeutic Strategy for Obesity-Related Breast Cancer. Molecular Cancer Therapeutics, 2012, 11, 2212-2221.	4.1	31
47	Isolation of cancer-derived extracellular vesicle subpopulations by a size-selective microfluidic platform. Biomicrofluidics, 2020, 14, 034113.	2.4	29
48	Phosphorylation of EZH2 at T416 by CDK2 contributes to the malignancy of triple negative breast cancers. American Journal of Translational Research (discontinued), 2015, 7, 1009-20.	0.0	28
49	Src Directly Phosphorylates Bif-1 and Prevents Its Interaction with Bax and the Initiation of Anoikis. Journal of Biological Chemistry, 2008, 283, 19112-19118.	3.4	25
50	Heat-killed Enterococcus fecalis (EC-12) supplement alters the expression of neurotransmitter receptor genes in the prefrontal cortex and alleviates anxiety-like behavior in mice. Neuroscience Letters, 2020, 720, 134753.	2.1	23
51	EPOX Inhibits Angiogenesis by Degradation of Mcl-1 through ERK Inactivation. Clinical Cancer Research, 2009, 15, 4904-4914.	7.0	22
52	Dual Targeting of Tumor Angiogenesis and Chemotherapy by Endostatin–Cytosine Deaminase–Uracil Phosphoribosyltransferase. Molecular Cancer Therapeutics, 2011, 10, 1327-1336.	4.1	21
53	Extracellular PKM2 induces cancer proliferation by activating the EGFR signaling pathway. American Journal of Cancer Research, 2016, 6, 628-38.	1.4	21
54	The suppression of MAD1 by AKTâ€mediated phosphorylation activates MAD1 target genes transcription. Molecular Carcinogenesis, 2009, 48, 1048-1058.	2.7	19

Нігоніто Үамадисні

#	Article	IF	CITATIONS
55	Interferonâ€inducible protein IFIXα inhibits cell invasion by upregulating the metastasis suppressor maspin. Molecular Carcinogenesis, 2008, 47, 739-743.	2.7	16
56	Activation of Keap1/Nrf2 signaling pathway by nuclear epidermal growth factor receptor in cancer cells. American Journal of Translational Research (discontinued), 2014, 6, 649-63.	0.0	16
57	Blocking c-Met and EGFR reverses acquired resistance of PARP inhibitors in triple-negative breast cancer. American Journal of Cancer Research, 2020, 10, 648-661.	1.4	15
58	Abstract 5169: Flow-proteometric analysis of single signaling complex , 2013, , .		14
59	PARP inhibitors as precision medicine for cancer treatment. National Science Review, 2017, 4, 576-592.	9.5	12
60	High speed digital protein interaction analysis using microfluidic single molecule detection system. Lab on A Chip, 2010, 10, 1793.	6.0	11
61	Human ribonuclease 1 serves as a secretory ligand of ephrin A4 receptor and induces breast tumor initiation. Nature Communications, 2021, 12, 2788.	12.8	11
62	Microfluidic three-dimensional hydrodynamic flow focusing for the rapid protein concentration analysis. Biomicrofluidics, 2012, 6, 24132.	2.4	10
63	Rapid detection of two-protein interaction with a single fluorophore by using a microfluidic device. Analyst, The, 2010, 135, 2907.	3.5	9
64	Carglumic acid promotes apoptosis and suppresses cancer cell proliferation in vitro and in vivo. American Journal of Cancer Research, 2015, 5, 3560-9.	1.4	8
65	mMAPS: A Flow-Proteometric Technique to Analyze Protein-Protein Interactions in Individual Signaling Complexes. Science Signaling, 2014, 7, rs1.	3.6	7
66	Analysis of Possible Silencer Elements of Ovine InterferonTAU. Gene Endocrine Journal, 2000, 47, 137-142.	1.6	6
67	Pneumatically Actuated Soft Micromold Device for Fabricating Collagen and Matrigel Microparticles. Soft Robotics, 2017, 4, 390-399.	8.0	6
68	Measurement of Protein 53 Diffusion Coefficient in Live HeLa Cells Using Raster Image Correlation Spectroscopy (RICS). Journal of Biomaterials and Nanobiotechnology, 2010, 01, 31-36.	0.5	6
69	Estrogen promotes increased breast cancer cell proliferation and migration through downregulation of CPEB1 expression. Biochemical and Biophysical Research Communications, 2021, 534, 871-876.	2.1	4
70	Regulation of InterferonTAU. Gene Expression and the Maternal Recognition of Pregnancy Journal of Reproduction and Development, 2001, 47, 69-82.	1.4	4
71	An essential role of PRMT1-mediated EGFR methylation in EGFR activation by ribonuclease 5. American Journal of Cancer Research, 2019, 9, 180-185.	1.4	4
72	Prospects of the potential strategies to improve the efficacy of antiâ€PDâ€1/PDâ€L1 therapy. Clinical and Translational Medicine, 2022, 12, e803.	4.0	4

Нігоніто Yamaguchi

#	Article	IF	CITATIONS
73	Development of automated high throughput single molecular microfluidic detection platform for signal transduction analysis. Proceedings of SPIE, 2016, , .	0.8	3
74	Development of size-selective microfluidic platform. , 2019, 2019, 5661-5664.		1
75	Abstract 4017: Identifying Protein-Protein Interactions in Single Protein Complex level by Microchannel Device. , 2010, , .		0
76	Abstract 5120: Using flow-proteometric platform to analyze individual signaling complexes in tumor tissue. , 2015, , .		0
77	Nanofluidic Strategies for Cancer Research. RSC Nanoscience and Nanotechnology, 2016, , 114-149.	0.2	0