
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7383991/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tumor-Derived Extracellular Vesicles Activate Normal Human Fibroblasts to a Cancer-Associated Fibroblast-Like Phenotype, Sustaining a Pro-Tumorigenic Microenvironment. Frontiers in Oncology, 2022, 12, 839880.	2.8	21
2	Maternal air pollution exposure during the first trimester of pregnancy and markers of inflammation and endothelial dysfunction. Environmental Research, 2022, 212, 113216.	7.5	15
3	Tofacitinib May Inhibit Myofibroblast Differentiation from Rheumatoid-Fibroblast-like Synoviocytes Induced by TGF- \hat{I}^2 and IL-6. Pharmaceuticals, 2022, 15, 622.	3.8	7
4	Extracellular Vesicles-ceRNAs as Ovarian Cancer Biomarkers: Looking into circRNA-miRNA-mRNA Code. Cancers, 2022, 14, 3404.	3.7	12
5	EV Separation: Release of Intact Extracellular Vesicles Immunocaptured on Magnetic Particles. Analytical Chemistry, 2021, 93, 5476-5483.	6.5	22
6	Blocking Jak/STAT signalling using tofacitinib inhibits angiogenesis in experimental arthritis. Arthritis Research and Therapy, 2021, 23, 213.	3.5	25
7	The Inflammatory Cytokine IL-3 Hampers Cardioprotection Mediated by Endothelial Cell-Derived Extracellular Vesicles Possibly via Their Protein Cargo. Cells, 2021, 10, 13.	4.1	19
8	Type I Collagen Suspension Induces Neocollagenesis and Myodifferentiation in Fibroblasts <i>In Vitro</i> . BioMed Research International, 2020, 2020, 1-11.	1.9	3
9	INSIDE Project: Individual Air Pollution Exposure, Extracellular Vesicles Signaling and Hypertensive Disorder Development in Pregnancy. International Journal of Environmental Research and Public Health, 2020, 17, 9046.	2.6	8
10	Biological effects of selective COX-2 inhibitor NS398 on human glioblastoma cell lines. Cancer Cell International, 2020, 20, 167.	4.1	18
11	Breast Cancer Derived Extracellular Vesicles in Bone Metastasis Induction and Their Clinical Implications as Biomarkers. International Journal of Molecular Sciences, 2020, 21, 3573.	4.1	26
12	In vitro evidence supporting applications of platelet derivatives in regenerative medicine. Blood Transfusion, 2020, 18, 117-129.	0.4	20
13	SIRT1-Dependent Upregulation of Antiglycative Defense in HUVECs Is Essential for Resveratrol Protection against High Glucose Stress. Antioxidants, 2019, 8, 346.	5.1	14
14	NOS2 inhibitor 1400W Induces Autophagic Flux and Influences Extracellular Vesicle Profile in Human Glioblastoma U87MG Cell Line. International Journal of Molecular Sciences, 2019, 20, 3010.	4.1	30
15	Short exposure to tranexamic acid does not affect, in vitro, the viability of human chondrocytes. European Journal of Medical Research, 2019, 24, 15.	2.2	19
16	NG2 as an Identity and Quality Marker of Mesenchymal Stem Cell Extracellular Vesicles. Cells, 2019, 8, 1524.	4.1	18
17	CD18-mediated adhesion is required for the induction of a proinflammatory phenotype in lung epithelial cells by mononuclear cell-derived extracellular vesicles. Experimental Cell Research, 2018, 365, 78-84.	2.6	16
18	Ovarian cancer-derived extracellular vesicles affect normal human fibroblast behavior. Cancer Biology and Therapy, 2018, 19, 1-44.	3.4	48

VINCENZA DOLO

#	Article	IF	CITATIONS
19	Leukocyte depletion does not affect the inÃ ⁻ ¿½vitro healing ability of platelet rich plasma. Experimental and Therapeutic Medicine, 2018, 15, 4029-4038.	1.8	19
20	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
21	Extracellular Vesicle-Shuttled mRNA in Mesenchymal Stem Cell Communication. Stem Cells, 2017, 35, 1093-1105.	3.2	95
22	Extracellular vesicle-packaged miRNA release after short-term exposure to particulate matter is associated with increased coagulation. Particle and Fibre Toxicology, 2017, 14, 32.	6.2	85
23	Extracellular Vesicles in Glioblastoma: Role in Biological Processes and in Therapeutic Applications. Current Cancer Drug Targets, 2017, 17, 221-235.	1.6	27
24	The in Vitro Wound Healing System Detects Differences in the Quality of Probiotic Formulations. American Journal of Gastroenterology, 2016, 111, S269-S270.	0.4	0
25	p53 as a prognostic marker associated with the risk of mortality for oral squamous cell carcinoma. Oncology Letters, 2016, 12, 1046-1050.	1.8	10
26	The human ovarian cancer cell line CABA I: A peculiar genetic evolution. International Journal of Molecular Medicine, 2016, 37, 879-888.	4.0	2
27	From glioblastoma to endothelial cells through extracellular vesicles: messages for angiogenesis. Tumor Biology, 2016, 37, 12743-12753.	1.8	83
28	Association between p53 status, human papillomavirus infection, and overall survival in advanced oral cancer after resection and combination systemic treatment. British Journal of Oral and Maxillofacial Surgery, 2016, 54, 198-202.	0.8	4
29	Time-dependent release of extracellular vesicle subpopulations in tumor CABA I cells. Oncology Reports, 2015, 34, 2752-2759.	2.6	7
30	Platelet Concentration in Platelet-Rich Plasma Affects Tenocyte Behavior <i>In Vitro</i> . BioMed Research International, 2014, 2014, 1-12.	1.9	77
31	Extracellular Vesicles in Prostate Cancer: New Future Clinical Strategies?. BioMed Research International, 2014, 2014, 1-14.	1.9	21
32	Topical application of platelet supernatant gel in the management of radiotherapy-induced mucositis: a case report. Blood Transfusion, 2014, 12, 107-10.	0.4	3
33	Evaluation of p53 protein as a prognostic factor for oral cancer surgery. British Journal of Oral and Maxillofacial Surgery, 2013, 51, 922-927.	0.8	12
34	The effects of platelet gel–released supernatant on human fibroblasts. Wound Repair and Regeneration, 2013, 21, 300-308.	3.0	17
35	Microvesicles as Potential Ovarian Cancer Biomarkers. BioMed Research International, 2013, 2013, 1-12.	1.9	50
36	Increased levels of DNA methyltransferases are associated with the tumorigenic capacity of prostate cancer cells. Oncology Reports, 2013, 29, 1189-1195.	2.6	55

#	Article	lF	CITATIONS
37	Abstract 3440: CRM1-Selective Inhibitors of Nuclear Export (SINE) reduce the incidence of tumor spreading and improve overall survival in preclinical models of prostate cancer , 2013, , .		1
38	Differential effects of PXD101 (belinostat) on androgen-dependent and androgen-independent prostate cancer models. International Journal of Oncology, 2011, 40, 711-20.	3.3	27
39	Suberoylanilide hydroxamic acid partly reverses resistance to paclitaxel in human ovarian cancer cell lines. Gynecologic Oncology, 2010, 119, 557-563.	1.4	21
40	Receptor Activator of NF-κB Ligand Enhances Breast Cancer–Induced Osteolytic Lesions through Upregulation of Extracellular Matrix Metalloproteinase Inducer/CD147. Cancer Research, 2010, 70, 6150-6160.	0.9	54
41	Azacitidine improves antitumor effects of docetaxel and cisplatin in aggressive prostate cancer models. Endocrine-Related Cancer, 2009, 16, 401-413.	3.1	63
42	Her2 crosstalks with TrkA in a subset of prostate cancer cells: Rationale for a guided dual treatment. Prostate, 2009, 69, 337-345.	2.3	9
43	Effects of EGFR tyrosine kinase inhibitor erlotinib in prostate cancer cells in vitro. Prostate, 2009, 69, 1529-1537.	2.3	24
44	Identification of an optimal concentration of platelet gel for promoting angiogenesis in human endothelial cells. Transfusion, 2009, 49, 771-778.	1.6	153
45	Bicalutamide Demonstrates Biologic Effectiveness in Prostate Cancer Cell Lines and Tumor Primary Cultures Irrespective of Her2/neu Expression Levels. Urology, 2009, 74, 452-457.	1.0	5
46	Vasculogenic mimicry of human ovarian cancer cells: Role of CD147. International Journal of Oncology, 2009, 35, 1423-8.	3.3	21
47	Neuroendocrine transdifferentiation induced by VPA is mediated by PPARÎ ³ activation and confers resistance to antiblastic therapy in prostate carcinoma. Prostate, 2008, 68, 588-598.	2.3	10
48	Chronic azacitidine treatment results in differentiating effects, sensitizes against bicalutamide in androgen-independent prostate cancer cells. Prostate, 2008, 68, 793-801.	2.3	31
49	Akt downâ€modulation induces apoptosis of human prostate cancer cells and synergizes with EGFR tyrosine kinase inhibitors. Prostate, 2008, 68, 965-974.	2.3	29
50	Cathepsin B Mediates the pH-Dependent Proinvasive Activity of Tumor-Shed Microvesicles. Neoplasia, 2008, 10, 481-488.	5.3	137
51	Phosphatidylcholine-Specific Phospholipase C Activation in Epithelial Ovarian Cancer Cells. Cancer Research, 2008, 68, 6541-6549.	0.9	86
52	Platelet gel-released supernatant modulates the angiogenic capability of human endothelial cells. Blood Transfusion, 2008, 6, 12-7.	0.4	66
53	Detrimental effects of anabolic steroids on human endothelial cells. Toxicology Letters, 2007, 169, 129-136.	0.8	43
54	Tumor Vesicle—Associated CD147 Modulates the Angiogenic Capability of Endothelial Cells. Neoplasia, 2007, 9, 349-357.	5.3	203

#	Article	IF	CITATIONS
55	Impairment of endothelial cell differentiation from bone marrow–derived mesenchymal stem cells: New insight into the pathogenesis of systemic sclerosis. Arthritis and Rheumatism, 2007, 56, 1994-2004.	6.7	138
56	Bioavailability of VEGF in Tumor-Shed Vesicles Depends on Vesicle Burst Induced by Acidic pH. Neoplasia, 2006, 8, 96-103.	5.3	168
57	Osteoblast-conditioned media stimulate membrane vesicle shedding in prostate cancer cells. International Journal of Oncology, 2006, 28, 909.	3.3	9
58	Lack of ceramide generation and altered sphingolipid composition are associated with drug resistance in human ovarian carcinoma cells. Biochemical Journal, 2006, 395, 311-318.	3.7	41
59	Valproic acid induces apoptosis in prostate carcinoma cell lines by activation of multiple death pathways. Anti-Cancer Drugs, 2006, 17, 1141-1150.	1.4	33
60	Osteoblast-conditioned media stimulate membrane vesicle shedding in prostate cancer cells. International Journal of Oncology, 2006, 28, 909-14.	3.3	12
61	Alterations of Choline Phospholipid Metabolism in Ovarian Tumor Progression. Cancer Research, 2005, 65, 9369-9376.	0.9	258
62	Molecular aspects of gefitinib antiproliferative and pro-apoptotic effects in PTEN-positive and PTEN-negative prostate cancer cell lines. Endocrine-Related Cancer, 2005, 12, 983-998.	3.1	49
63	GnRH antagonist in IVF poor-responder patients: results of a randomized trial. Reproductive BioMedicine Online, 2005, 11, 189-193.	2.4	90
64	Intrafollicular expression of matrix metalloproteinases and their inhibitors in normally ovulating women compared with patients undergoing in vitro fertilization treatment. European Journal of Endocrinology, 2004, 151, 87-91.	3.7	27
65	Shedding of Membrane Vesicles Mediates Fibroblast Growth Factor-2 Release from Cells. Journal of Biological Chemistry, 2003, 278, 51911-51919.	3.4	99
66	Shedding of the Matrix Metalloproteinases MMP-2, MMP-9, and MT1-MMP as Membrane Vesicle-Associated Components by Endothelial Cells. American Journal of Pathology, 2002, 160, 673-680.	3.8	502
67	Association of cellular prion protein with gangliosides in plasma membrane microdomains of neural and lymphocytic cells. Neurochemical Research, 2002, 27, 743-749.	3.3	31
68	Evidence for cell surface association between CXCR4 and ganglioside GM3 after gp120 binding in SupT1 lymphoblastoid cells. FEBS Letters, 2001, 506, 55-60.	2.8	35
69	Specific neurons of brain cortex and cerebellum are PIPPin positive. NeuroReport, 2000, 11, 2233-2236.	1.2	11
70	Evidence that ganglioside enriched domains are distinct from caveolae in MDCK II and human fibroblast cells in culture. FEBS Journal, 2000, 267, 4187-4197.	0.2	76
71	Downmodulation of caveolin-1 expression in human ovarian carcinoma is directly related to α-folate receptor overexpression. Oncogene, 2000, 19, 4754-4763.	5.9	74
72	Vesicle-associated urokinase plasminogen activator promotes invasion in prostate cancer cell lines. Clinical and Experimental Metastasis, 2000, 18, 163-170.	3.3	74

#	Article	IF	CITATIONS
73	Association between GM3 and CD4-Ick complex in human peripheral blood lymphocytes. Glycoconjugate Journal, 2000, 17, 247-252.	2.7	15
74	New approaches to the study of sphingolipid enriched membrane domains: the use of electron microscopic autoradiography to reveal metabolically tritium labeled sphingolipids in cell cultures. Glycoconjugate Journal, 2000, 17, 261-268.	2.7	5
75	Enrichment and localization of ganglioside GD3 and caveolin-1 in shed tumor cell membrane vesicles. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1486, 265-274.	2.4	66
76	Morphological Analysis of the Interaction of Charged Surfactant Vesicles (SVs) with Human Cultured Cells. Biotechnic and Histochemistry, 1999, 74, 77-84.	1.3	1
77	Shed Membrane Vesicles and Selective Localization of Gelatinases and MMP-9/TIMP-1 Complexes. Annals of the New York Academy of Sciences, 1999, 878, 497-499.	3.8	32
78	Glycosphingolipid Domains on Cell Plasma Membrane. Bioscience Reports, 1999, 19, 197-208.	2.4	12
79	Matrix-degrading proteinases are shed in membrane vesicles by ovarian cancer cells in vivo and in vitro. Clinical and Experimental Metastasis, 1999, 17, 131-140.	3.3	141
80	Plasminogen activator system modulates invasive capacity and proliferation in prostatic tumor cells. Clinical and Experimental Metastasis, 1998, 16, 513-528.	3.3	82
81	Urokinase Plasminogen Activator and Gelatinases Are Associated with Membrane Vesicles Shed by Human HT1080 Fibrosarcoma Cells. Journal of Biological Chemistry, 1997, 272, 17216-17222.	3.4	146
82	Membrane vesicles shed into the extracellular medium by human breast carcinoma cells carry tumor-associated surface antigens. Clinical and Experimental Metastasis, 1995, 13, 277-286.	3.3	52
83	Fisiopatologia. — Membrane vesicles, shed from in vitro cultured human breast carcinomas cells, inhibit lymphocytes proliferation Rendiconti Lincei, 1994, 5, 203-210.	2.2	2
84	Differential expression and function of cadherin-like proteins in the sea urchin embryo. Mechanisms of Development, 1993, 41, 47-55.	1.7	20
85	Downmodulation of dimethyl transferase activity enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in prostate cancer cells. International Journal of Oncology, 1992, 33, 381.	3.3	3
86	An acid extract from dissociation medium of sea urchin embryos, induces mesenchyme differentiation. Cell Biology International Reports, 1992, 16, 517-532.	0.6	5
87	Tyrosine kinase inhibitor CEP-701 blocks the NTRK1/NGF receptor and limits the invasive capability of prostate cancer cells in vitro. International Journal of Oncology, 0, , .	3.3	20