Isabelle R Miousse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/738352/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soy Formula Is Not Estrogenic and Does Not Result in Reproductive Toxicity in Male Piglets: Results from a Controlled Feeding Study. Nutrients, 2022, 14, 1126.	4.1	3
2	Effects of Gamma-Tocotrienol on Intestinal Injury in a GI-Specific Acute Radiation Syndrome Model in Nonhuman Primate. International Journal of Molecular Sciences, 2022, 23, 4643.	4.1	14
3	Dietary Methionine Deficiency Enhances Genetic Instability in Murine Immune Cells. International Journal of Molecular Sciences, 2021, 22, 2378.	4.1	4
4	Differences in cell death in methionine versus cysteine depletion. Environmental and Molecular Mutagenesis, 2021, 62, 216-226.	2.2	13
5	32219 Differences in cell death in methionine versus cysteine depletion. Journal of Clinical and Translational Science, 2021, 5, 10-11.	0.6	0
6	Plasma Metabolomics in a Nonhuman Primate Model of Abdominal Radiation Exposure. Metabolites, 2021, 11, 540.	2.9	0
7	NZO/HILtJ as a novel model for the studies on the role of metabolic syndrome in acute radiation toxicity. International Journal of Radiation Biology, 2020, 96, 93-99.	1.8	5
8	Reply to Flugge: the anti-metastatic potential of methionine restriction in melanoma. Carcinogenesis, 2020, 41, 390-391.	2.8	0
9	Sex-Specific Effects of Dietary Methionine Restriction on the Intestinal Microbiome. Nutrients, 2020, 12, 781.	4.1	31
10	Methionine dietary supplementation potentiates ionizing radiation-induced gastrointestinal syndrome. American Journal of Physiology - Renal Physiology, 2020, 318, G439-G450.	3.4	14
11	Effects of low-dose oxygen ions and protons on cardiac function and structure in male C57BL/6J mice. Life Sciences in Space Research, 2019, 20, 72-84.	2.3	20
12	Changes in one-carbon metabolism and DNA methylation in the hearts of mice exposed to space environment-relevant doses of oxygen ions (160). Life Sciences in Space Research, 2019, 22, 8-15.	2.3	13
13	Decaffeinated Green Tea Extract Does Not Elicit Hepatotoxic Effects and Modulates the Gut Microbiome in Lean B6C3F1 Mice. Nutrients, 2019, 11, 776.	4.1	17
14	Impact of obesity on the toxicity of a multi-ingredient dietary supplement, OxyELITE Proâ,,¢ (New) Tj ETQq0 0 0 Food and Chemical Toxicology, 2018, 122, 21-32.	rgBT /Ove 3.6	rlock 10 Tf 50 6
15	Modulation of dietary methionine intake elicits potent, yet distinct, anticancer effects on primary versus metastatic tumors. Carcinogenesis, 2018, 39, 1117-1126.	2.8	24
16	DNA Methylation in Radiation-Induced Carcinogenesis: Experimental Evidence and Clinical Perspectives. Critical Reviews in Oncogenesis, 2018, 23, 1-11.	0.4	8
17	Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications. International Journal of Radiation Biology, 2017, 93, 457-469.	1.8	128
18	Dose-response analysis of epigenetic, metabolic, and apical endpoints after short-term exposure to experimental hepatotoxicants. Food and Chemical Toxicology, 2017, 109, 690-702.	3.6	21

ISABELLE R MIOUSSE

#	Article	IF	CITATIONS
19	One-carbon metabolism and ionizing radiation: a multifaceted interaction. Biomolecular Concepts, 2017, 8, 83-92.	2.2	19
20	MicroRNAs as biomarkers for liver injury: Current knowledge, challenges and future prospects. Food and Chemical Toxicology, 2017, 110, 229-239.	3.6	41
21	Safety assessment of the dietary supplement OxyELITEâ,,¢ Pro (New Formula) in inbred and outbred mouse strains. Food and Chemical Toxicology, 2017, 109, 194-209.	3.6	18
22	Inter-Strain Differences in LINE-1 DNA Methylation in the Mouse Hematopoietic System in Response to Exposure to Ionizing Radiation. International Journal of Molecular Sciences, 2017, 18, 1430.	4.1	28
23	Short-term dietary methionine supplementation affects one-carbon metabolism and DNA methylation in the mouse gut and leads to altered microbiome profiles, barrier function, gene expression and histomorphology. Genes and Nutrition, 2017, 12, 22.	2.5	47
24	Short-term exposure to engineered nanomaterials affects cellular epigenome. Nanotoxicology, 2016, 10, 1-11.	3.0	82
25	Effects of Laser Printer–Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive <i>in Vitro</i> Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts. Environmental Health Perspectives. 2016. 124. 210-219.	6.0	64
26	Pediatric Exposures to Ionizing Radiation: Carcinogenic Considerations. International Journal of Environmental Research and Public Health, 2016, 13, 1057.	2.6	129
27	Densely ionizing radiation affects DNA methylation of selective LINE-1 elements. Environmental Research, 2016, 150, 470-481.	7.5	28
28	Analysis of the Ambient Particulate Matter-induced Chromosomal Aberrations Using an In Vitro System. Journal of Visualized Experiments, 2016, , .	0.3	3
29	A priming dose of protons alters the early cardiac cellular and molecular response to 56 Fe irradiation. Life Sciences in Space Research, 2016, 8, 8-13.	2.3	27
30	Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 787, 43-53.	1.0	49
31	Effects of intratracheally instilled laser printer-emitted engineered nanoparticles in a mouse model: A case study of toxicological implications from nanomaterials released during consumer use. NanoImpact, 2016, 1, 1-8.	4.5	41
32	<i>In vivo</i> epigenetic effects induced by engineered nanomaterials: A case study of copper oxide and laser printer-emitted engineered nanoparticles. Nanotoxicology, 2016, 10, 629-639.	3.0	83
33	The Fine LINE: Methylation Drawing the Cancer Landscape. BioMed Research International, 2015, 2015, 1-8.	1.9	55
34	Response of transposable elements to environmental stressors. Mutation Research - Reviews in Mutation Research, 2015, 765, 19-39.	5.5	112
35	The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis. Carcinogenesis, 2015, 36, S128-S159.	2.8	40
36	Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 2015, 36, S254-S296.	2.8	239

ISABELLE R MIOUSSE

#	Article	IF	CITATIONS
37	Trace element status and zinc homeostasis differ in breast and formula-fed piglets. Experimental Biology and Medicine, 2015, 240, 58-66.	2.4	0
38	<i>In Vitro</i> Toxicity and Epigenotoxicity of Different Types of Ambient Particulate Matter. Toxicological Sciences, 2015, 148, 473-487.	3.1	29
39	Combined exposure to protons and 56 Fe leads to overexpression of Il13 and reactivation of repetitive elements in the mouse lung. Life Sciences in Space Research, 2015, 7, 1-8.	2.3	16
40	Long-term epigenetic effects of exposure to low doses of 56Fe in the mouse lung. Journal of Radiation Research, 2014, 55, 823-828.	1.6	34
41	Epigenetic alterations induced by ambient particulate matter in mouse macrophages. Environmental and Molecular Mutagenesis, 2014, 55, 428-435.	2.2	36
42	Clinical, Biochemical, and Molecular Presentation in a Patient with the cblD-Homocystinuria Inborn Error of Cobalamin Metabolism. JIMD Reports, 2014, 17, 77-81.	1.5	12
43	Exposure to Low-Dose 56Fe-Ion Radiation Induces Long-Term Epigenetic Alterations in Mouse Bone Marrow Hematopoietic Progenitor and Stem Cells. Radiation Research, 2014, 182, 92.	1.5	58
44	Mammary gland morphology and gene expression signature of weanling male and female rats following exposure to exogenous estradiol. Experimental Biology and Medicine, 2013, 238, 1033-1046.	2.4	9
45	Feeding soy protein isolate and treatment with estradiol have different effects on mammary gland morphology and gene expression in weanling male and female rats. Physiological Genomics, 2013, 45, 1072-1083.	2.3	11
46	Structural features of recombinant MMADHC isoforms and their interactions with MMACHC, proteins of mammalian vitamin B12 metabolism. Molecular Genetics and Metabolism, 2012, 107, 352-362.	1.1	27
47	Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nature Genetics, 2012, 44, 1152-1155.	21.4	191
48	Novel splice site mutations and a large deletion in three patients with the cblF inborn error of vitamin B12 metabolism. Molecular Genetics and Metabolism, 2011, 102, 505-507.	1.1	18
49	Cobalamin F Disease Detected by Newborn Screening and Follow-up on a 14-Year-Old Patient. Pediatrics, 2011, 128, e1636-e1640.	2.1	13
50	Clinical and Molecular Heterogeneity in Patients with the CblD Inborn Error of Cobalamin Metabolism. Journal of Pediatrics, 2009, 154, 551-556.	1.8	44
51	Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12 metabolism. Nature Genetics, 2009, 41, 234-239.	21.4	167
52	Interactions between TonB from Escherichia coli and the Periplasmic Protein FhuD. Journal of Biological Chemistry, 2006, 281, 35413-35424.	3.4	47