Joachim Franzke List of Publications by Year in descending order Source: https://exaly.com/author-pdf/7381333/publications.pdf Version: 2024-02-01 | 77 | 2,426 | 27 h-index | 47 | |----------|----------------|--------------|----------------| | papers | citations | | g-index | | 79 | 79 | 79 | 1948 | | all docs | docs citations | times ranked | citing authors | | # | Article | IF | CITATIONS | |----|---|------|-----------| | 1 | Scaling and the design of miniaturized chemical-analysis systems. Nature, 2006, 442, 374-380. | 27.8 | 635 | | 2 | Dielectric Barrier Discharge Ionization for Liquid Chromatography/Mass Spectrometry. Analytical Chemistry, 2009, 81, 10239-10245. | 6.5 | 110 | | 3 | Microplasmas for analytical spectrometry. Journal of Analytical Atomic Spectrometry, 2003, 18, 802. | 3.0 | 93 | | 4 | Spectroscopic characterization of a microplasma used as ionization source for ion mobility spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 1208-1215. | 2.9 | 79 | | 5 | On the potential of ion mobility spectrometry coupled to GC pre-separation – A tutorial. Analytica Chimica Acta, 2018, 1024, 52-64. | 5.4 | 62 | | 6 | Ambient Diode Laser Desorption Dielectric Barrier Discharge Ionization Mass Spectrometry of Nonvolatile Chemicals. Analytical Chemistry, 2013, 85, 3174-3182. | 6.5 | 58 | | 7 | Micro-plasma: a novel ionisation source for ion mobility spectrometry. Analytical and Bioanalytical Chemistry, 2008, 391, 2609-2615. | 3.7 | 56 | | 8 | Analytical Detectors Based on Microplasma Spectrometry. Plasma Chemistry and Plasma Processing, 2007, 27, 205-224. | 2.4 | 52 | | 9 | Direct optical emission spectroscopy of liquid analytes using an electrolyte as a cathode discharge source (ELCAD) integrated on a micro-fluidic chip. Lab on A Chip, 2005, 5, 711. | 6.0 | 51 | | 10 | Simultaneous testing of multiclass organic contaminants in food and environment by liquid chromatography/dielectric barrier discharge ionization-mass spectrometry. Analyst, The, 2012, 137, 5403. | 3.5 | 51 | | 11 | Review: Miniature dielectric barrier discharge (DBD) in analytical atomic spectrometry. Analytica
Chimica Acta, 2021, 1147, 211-239. | 5.4 | 48 | | 12 | A new interface to couple thin-layer chromatography with laser desorption/atmospheric pressure chemical ionization mass spectrometry for plate scanning. Rapid Communications in Mass Spectrometry, 2005, 19, 2789-2793. | 1.5 | 46 | | 13 | Dielectric barrier discharges applied for soft ionization and their mechanism. Analytica Chimica Acta, 2017, 951, 16-31. | 5.4 | 44 | | 14 | Liquid electrode dielectric barrier discharge for the analysis of solved metals. Journal of Analytical Atomic Spectrometry, 2011, 26, 1974. | 3.0 | 42 | | 15 | Determination of Peroxide Explosive TATP and Related Compounds by Dielectric Barrier Discharge Ionization-Mass Spectrometry (DBDI-MS). Analytical Chemistry, 2017, 89, 4210-4215. | 6.5 | 41 | | 16 | Ambient (desorption/ionization) mass spectrometry methods for pesticide testing in food: a review. Analytical Methods, 2020, 12, 4831-4852. | 2.7 | 40 | | 17 | Liquid analysis dielectric capillary barrier discharge. Analytical and Bioanalytical Chemistry, 2010, 397, 2917-2922. | 3.7 | 35 | | 18 | Performance of dielectric barrier discharge ionization mass spectrometry for pesticide testing: a comparison with atmospheric pressure chemical ionization and electrospray ionization. Rapid Communications in Mass Spectrometry, 2013, 27, 419-429. | 1.5 | 35 | | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 19 | Dielectric Barrier Discharge Ionization of Perfluorinated Compounds. Analytical Chemistry, 2015, 87, 11415-11419. | 6.5 | 35 | | 20 | Thin-layer chromatography combined with diode laser desorption/atmospheric pressure chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18, 1803-1808. | 1.5 | 34 | | 21 | Spatially and Temporally Resolved Detection of Arsenic in a Capillary Dielectric Barrier Discharge by Hydride Generation High-Resolved Optical Emission Spectrometry. Analytical Chemistry, 2018, 90, 3424-3429. | 6.5 | 33 | | 22 | Use of dielectric barrier discharge ionization to minimize matrix effects and expand coverage in pesticide residue analysis by liquid chromatography-mass spectrometry. Analytica Chimica Acta, 2018, 1020, 76-85. | 5.4 | 32 | | 23 | Investigations into Modeling and Further Estimation of Detection Limits of the Liquid Electrode Dielectric Barrier Discharge. Analytical Chemistry, 2014, 86, 5822-5828. | 6.5 | 31 | | 24 | Characterization of a Nitrogen-Based Dielectric Barrier Discharge Ionization Source for Mass Spectrometry Reveals Factors Important for Soft Ionization. Analytical Chemistry, 2019, 91, 6865-6871. | 6.5 | 31 | | 25 | Capillary Dielectric Barrier Discharge: Transition from Soft Ionization to Dissociative Plasma.
Analytical Chemistry, 2016, 88, 4701-4705. | 6.5 | 30 | | 26 | Impact of homogeneous and filamentary discharge modes on the efficiency of dielectric barrier discharge ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 2013, 405, 4729-4735. | 3.7 | 28 | | 27 | Discussion of fundamental processes in dielectric barrier discharges used for soft ionization.
Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 100, 52-61. | 2.9 | 28 | | 28 | Characterization of dielectric barrier electrospray ionization for mass spectrometric detection. Analytical and Bioanalytical Chemistry, 2010, 397, 1767-1772. | 3.7 | 27 | | 29 | Flexible Microtube Plasma (FνTP) as an Embedded Ionization Source for a Microchip Mass Spectrometer Interface. Analytical Chemistry, 2018, 90, 10111-10116. | 6.5 | 27 | | 30 | Microplasma jet mass spectrometry of halogenated organic compounds. Journal of Analytical Atomic Spectrometry, 2004, 19, 990. | 3.0 | 26 | | 31 | Sample Analysis with Miniaturized Plasmas. Applied Spectroscopy, 2006, 60, 80A-90A. | 2.2 | 26 | | 32 | Development of a novel dielectric barrier microhollow cathode discharge for gaseous atomic emission spectroscopy. Journal of Analytical Atomic Spectrometry, 2012, 27, 677. | 3.0 | 23 | | 33 | Mechanistic Understanding Leads to Increased Ionization Efficiency and Selectivity in Dielectric
Barrier Discharge Ionization Mass Spectrometry: A Case Study with Perfluorinated Compounds.
Analytical Chemistry, 2018, 90, 2725-2731. | 6.5 | 23 | | 34 | Soft Argon–Propane Dielectric Barrier Discharge Ionization. Analytical Chemistry, 2018, 90, 3537-3542. | 6.5 | 22 | | 35 | Coupling laser desorption with gas chromatography and ion mobility spectrometry for improved olive oil characterisation. Food Chemistry, 2018, 255, 323-331. | 8.2 | 21 | | 36 | Electrospray-ionization driven by dielectric polarization. Analytical and Bioanalytical Chemistry, 2008, 391, 555-561. | 3.7 | 20 | | # | Article | IF | Citations | |----|--|-----|-----------| | 37 | Atmospheric helium capillary dielectric barrier discharge for soft ionization: broadening of spectral lines, gas temperature and electron number density. Journal of Analytical Atomic Spectrometry, 2014, 29, 498-505. | 3.0 | 20 | | 38 | Radiofrequency driven and low cost fabricated microhollow cathode discharge for gaseous atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 2011, 26, 505-510. | 3.0 | 19 | | 39 | Systematic Comparison between Half and Full Dielectric Barrier Discharges Based on the Low
Temperature Plasma Probe (LTP) and Dielectric Barrier Discharge for Soft Ionization (DBDI)
Configurations. Analytical Chemistry, 2017, 89, 9368-9374. | 6.5 | 19 | | 40 | Novel designs of dielectric barrier discharge hydride atomizers for atomic spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 146, 69-76. | 2.9 | 17 | | 41 | Detection of multiclass explosives and related compounds in soil and water by liquid chromatography-dielectric barrier discharge ionization-mass spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 4785-4796. | 3.7 | 17 | | 42 | Tuning Soft Ionization Strength for Organic Mass Spectrometry. Analytical Chemistry, 2016, 88, 5538-5541. | 6.5 | 16 | | 43 | Analyte-Tailored Controlled Atmosphere Improves Dielectric Barrier Discharge Ionization Mass Spectrometry Performance. Analytical Chemistry, 2019, 91, 3733-3739. | 6.5 | 16 | | 44 | Hydride generation atomic absorption spectrometry with a dielectric barrier discharge atomizer: Method optimization and evaluation of analytical performance for tin. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 158, 105630. | 2.9 | 16 | | 45 | Time-resolved spectroscopy of a homogeneous dielectric barrier discharge for soft ionization driven by square wave high voltage. Analytical and Bioanalytical Chemistry, 2015, 407, 7973-7981. | 3.7 | 15 | | 46 | Atomization of arsenic hydride in a planar dielectric barrier discharge: Behavior of As atoms studied by temporally and spatially resolved optical emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 152, 68-73. | 2.9 | 15 | | 47 | Study of Controlled Atmosphere Flexible Microtube Plasma Soft Ionization Mass Spectrometry for Detection of Volatile Organic Compounds as Potential Biomarkers in Saliva for Cancer. Analytical Chemistry, 2020, 92, 9722-9729. | 6.5 | 13 | | 48 | Time- and spatially resolved emission spectroscopy of the dielectric barrier discharge for soft ionization sustained by a quasi-sinusoidal high voltage. Analytical and Bioanalytical Chemistry, 2015, 407, 6689-6696. | 3.7 | 12 | | 49 | Stepwise optimization of a Flexible Microtube Plasma (FµTP) as an ionization source for Ion Mobility Spectrometry. Analytica Chimica Acta, 2020, 1127, 89-97. | 5.4 | 12 | | 50 | Characterization of dielectric barrier discharges for analytical chemistry. Journal Physics D: Applied Physics, 2018, 51, 314003. | 2.8 | 11 | | 51 | Standardization of Sandwich-Structured Cu–Glass Substrates Embedded in a Flexible Diode
Laser–Plasma Interface for the Detection of Cholesterol. Analytical Chemistry, 2020, 92, 4663-4671. | 6.5 | 11 | | 52 | Spectroscopic measurements of the electron number density, electron temperature and OH(A) rotational distribution in a liquid electrode dielectric barrier discharge. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 114, 20-26. | 2.9 | 10 | | 53 | Screening of semifluorinated nâ€alkanes by gas chromatography coupled to dielectric barrier discharge ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 1092-1098. | 1.5 | 10 | | 54 | Detection and Evaluation of Lipid Classes and Other Hydrophobic Compounds Using a Laser Desorption/Plasma Ionization Interface. Analytical Chemistry, 2020, 92, 15212-15220. | 6.5 | 10 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 55 | Atmospheric Helium Capillary Dielectric Barrier Discharge for Soft Ionization: Determination of Atom Number Densities in the Lowest Excited and Metastable States. Analytical Chemistry, 2014, 86, 857-864. | 6.5 | 9 | | 56 | Influences of voltage shape and discharge gas on the temporally and spatially resolved emission characteristics of tin in a planar dielectric barrier discharge. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 161, 105695. | 2.9 | 9 | | 57 | Evaluation of a novel controlled-atmosphere flexible microtube plasma soft ionization source for the determination of BTEX in olive oil by headspace-gas chromatography/mass spectrometry. Analytica Chimica Acta, 2021, 1179, 338835. | 5.4 | 8 | | 58 | Microdischarges for analytical applications. Analytical and Bioanalytical Chemistry, 2009, 395, 547-548. | 3.7 | 7 | | 59 | Temporal evolution of tellurium emission lines in a capillary dielectric barrier discharge after hydride generation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 171, 105936. | 2.9 | 7 | | 60 | 3D-printing of a complete modular ion mobility spectrometer. Materials Today, 2021, 44, 58-68. | 14.2 | 7 | | 61 | Dielectric Barrier Electrospray–Polarity Cycle and Trigger. Analytical Chemistry, 2013, 85, 10738-10744. | 6.5 | 6 | | 62 | Coupling paper spray ionization with the flexible microtube plasma for the determination of low polar biomarkers in mass spectrometry. Analytica Chimica Acta, 2022, 1201, 339619. | 5.4 | 5 | | 63 | Diagnostics of low pressure microplasmas for surface modification. Surface and Coatings Technology, 2011, 205, S381-S383. | 4.8 | 4 | | 64 | Neue kosteneffektive Mess―und Regeltechnik für das Numberingâ€up von reaktiven Pfropfenströmungen in MikrokanÃlen. Chemie-Ingenieur-Technik, 2015, 87, 1221-1229. | 0.8 | 4 | | 65 | Time-resolved line emission spectroscopy and the electrical currents in the plasma jet generated by dielectric barrier discharge for soft ionization. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 113, 152-157. | 2.9 | 4 | | 66 | Spatiotemporal characterization of different dielectric barrier discharges designed for soft ionization. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 176, 106037. | 2.9 | 4 | | 67 | Measured Effects of Various Electrolyte and Capillary Properties in Dielectric Barrier Electrospray Ionization: Development of a Comprehensive Model. Analytical Chemistry, 2012, 84, 9015-9024. | 6.5 | 3 | | 68 | Medium Vacuum Electron Emitter as Soft Atmospheric Pressure Chemical Ionization Source for Organic Molecules. Analytical Chemistry, 2016, 88, 5003-5008. | 6.5 | 3 | | 69 | Optical characterization of miniature flexible micro-tube plasma ($\hat{\text{Fl}}/4\text{TP}$) ionization source: A dielectric guided discharge. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 181, 106222. | 2.9 | 3 | | 70 | Emitter-assigned multi-dielectric barrier-nano-electrospray ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 2015, 407, 6537-6542. | 3.7 | 2 | | 71 | Detection of illegal treatment of table tennis rackets using gas chromatography coupled to ion mobility spectrometry – A feasibility study. Analytica Chimica Acta, 2021, 1154, 338227. | 5.4 | 2 | | 72 | Impedance laser spectroscopy in a small RF-excited neon discharge. Mikrochimica Acta, 1994, 113, 349-355. | 5.0 | 1 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 73 | Pulsed Blue Laser Diode Thermal Desorption Microplasma Imaging Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2022, 33, 45-53. | 2.8 | 1 | | 74 | lonization of semi-fluorinated nâ€alkanes in controlled atmosphere using flexible micro-tube plasma (FμTP) ionization source with square- and sine-wave voltage. Talanta, 2022, 249, 123662. | 5.5 | 1 | | 75 | Liquid chromatographyâ€dielectric barrier discharge ionization mass spectrometry for the analysis of neutral lipids of archaeological interest. Journal of Separation Science, 0, , . | 2.5 | 1 | | 76 | Technik von Plasmabildschirmen und CDâ€Spielern für analytische Systeme. Nachrichten Aus Der Chemie, 2002, 50, 1247-1249. | 0.0 | 0 | | 77 | New Plasma Ionisation Sources for Mass-Spectrometric Detection of Lipids. , 2018, , 1-4. | | 0 |