

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7381202/publications.pdf Version: 2024-02-01

YONC

#	Article	IF	CITATIONS
1	Multi-objective path planning for unmanned surface vehicle with currents effects. ISA Transactions, 2018, 75, 137-156.	5.7	154
2	Stabilization of Neural-Network-Based Control Systems via Event-Triggered Control With Nonperiodic Sampled Data. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 573-585.	11.3	104
3	Fault Detection Filter and Controller Co-Design for Unmanned Surface Vehicles Under DoS Attacks. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 1422-1434.	8.0	100
4	Adaptive eventâ€ŧriggered control for nonlinear discreteâ€ŧime systems. International Journal of Robust and Nonlinear Control, 2016, 26, 4104-4125.	3.7	97
5	A Novel Cooperative Platform Design for Coupled USV–UAV Systems. IEEE Transactions on Industrial Informatics, 2019, 15, 4913-4922.	11.3	93
6	Event-Triggered Adaptive Neural Fault-Tolerant Control of Underactuated MSVs With Input Saturation. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 7045-7057.	8.0	82
7	Path Following Optimization for an Underactuated USV Using Smoothly-Convergent Deep Reinforcement Learning. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 6208-6220.	8.0	81
8	USV Formation and Path-Following Control via Deep Reinforcement Learning With Random Braking. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 5468-5478.	11.3	78
9	Adaptive Neural Output Feedback Control for MSVs With Predefined Performance. IEEE Transactions on Vehicular Technology, 2021, 70, 2994-3006.	6.3	61
10	Single-parameter-learning-based finite-time tracking control of underactuated MSVs under input saturation. Control Engineering Practice, 2020, 105, 104652.	5.5	50
11	Error-Driven-Based Nonlinear Feedback Recursive Design for Adaptive NN Trajectory Tracking Control of Surface Ships With Input Saturation. IEEE Intelligent Transportation Systems Magazine, 2019, 11, 17-28.	3.8	48
12	Path planning for multiple mobile robots under double-warehouse. Information Sciences, 2014, 278, 357-379.	6.9	39
13	Attack-Resilient Event-Triggered Fuzzy Interval Type-2 Filter Design for Networked Nonlinear Systems Under Sporadic Denial-of-Service Jamming Attacks. IEEE Transactions on Fuzzy Systems, 2022, 30, 190-204.	9.8	37
14	Event-triggered fuzzy control of networked nonlinear underactuated unmanned surface vehicle. Ocean Engineering, 2020, 213, 107540.	4.3	29
15	A collision avoidance approach via negotiation protocol for a swarm of USVs. Ocean Engineering, 2021, 224, 108713.	4.3	26
16	Hard sail optimization and energy efficiency enhancement for sail-assisted vessel. Ocean Engineering, 2019, 173, 687-699.	4.3	25
17	Event-Triggered Adaptive Fuzzy Setpoint Regulation of Surface Vessels With Unmeasured Velocities Under Thruster Saturation Constraints. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 13463-13472.	8.0	23
18	Path Planning for Mobile Objects in Four-Dimension Based on Particle Swarm Optimization Method with Penalty Function. Mathematical Problems in Engineering, 2013, 2013, 1-9.	1.1	18

Yong

#	Article	IF	CITATIONS
19	Collision-avoidance under COLRECS for unmanned surface vehicles via deep reinforcement learning. Maritime Policy and Management, 2020, 47, 665-686.	3.8	17
20	Broken lines path following algorithm for a water-jet propulsion USV with disturbance uncertainties. Ocean Engineering, 2020, 201, 107118.	4.3	17
21	Cooperative communication framework design for the unmanned aerial vehicles-unmanned surface vehicles formation. Advances in Mechanical Engineering, 2018, 10, 168781401877366.	1.6	16
22	<i>C C I B A</i> *: An Improved <i>BA</i> * Based Collaborative Coverage Path Planning Method for Multiple Unmanned Surface Mapping Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 19578-19588.	8.0	16
23	A novel approach for multiple mobile objects path planning: Parametrization method and conflict resolution strategy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 377-386.	2.1	13
24	Further results on memory control of nonlinear discrete-time networked control systems with random input delay. Nonlinear Dynamics, 2014, 77, 1531-1545.	5.2	12
25	Design of Sail-Assisted Unmanned Surface Vehicle Intelligent Control System. Mathematical Problems in Engineering, 2016, 2016, 1-13.	1.1	9
26	New insights into airfoil sail selection for sail-assisted vessel with computational fluid dynamics simulation. Advances in Mechanical Engineering, 2018, 10, 168781401877125.	1.6	7
27	Artificial forces for virtual autonomous ships with encountering situations in restricted waters. Maritime Policy and Management, 2020, 47, 687-702.	3.8	6
28	Mobile Robots Path Planning Using the Overall Conflict Resolution and Time Baseline Coordination. Mathematical Problems in Engineering, 2014, 2014, 1-13.	1.1	3
29	Research on Vessel Transit Capacity of Cross Area Channel Based on Single Vacation M/G/1 Model. , 2010, , .		1
30	Transient uniformity model predictive control in dealing with non-uniformity of multivariable systems. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2020, 234, 3-14.	0.5	0