
Chen-Zhu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7381175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression in Antennae and Reproductive Organs Suggests a Dual Role of an Odorant-Binding Protein in Two Sibling Helicoverpa Species. PLoS ONE, 2012, 7, e30040.	2.5	147
2	Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer, Liriomyza sativa. Journal of Insect Physiology, 2009, 55, 279-285.	2.0	116
3	An effector from cotton bollworm oral secretion impairs host plant defense signaling. Proceedings of the United States of America, 2019, 116, 14331-14338.	7.1	98
4	Three pheromone-binding proteins help segregation between two Helicoverpa species utilizing the same pheromone components. Insect Biochemistry and Molecular Biology, 2012, 42, 708-716.	2.7	85
5	A gustatory receptor tuned to d-fructose in antennal sensilla chaetica of Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 2015, 60, 39-46.	2.7	82
6	Identification and Field Evaluation of Pear Fruit Volatiles Attractive to the Oriental Fruit Moth, Cydia molesta. Journal of Chemical Ecology, 2012, 38, 1003-1016.	1.8	78
7	Sequence similarity and functional comparisons of pheromone receptor orthologs in two closely related Helicoverpa species. Insect Biochemistry and Molecular Biology, 2014, 48, 63-74.	2.7	74
8	Functional validation of the carbon dioxide receptor in labial palps of Helicoverpa armigera moths. Insect Biochemistry and Molecular Biology, 2016, 73, 12-19.	2.7	73
9	Conserved chemosensory proteins in the proboscis and eyes of Lepidoptera. International Journal of Biological Sciences, 2016, 12, 1394-1404.	6.4	72
10	A determining factor for insect feeding preference in the silkworm, Bombyx mori. PLoS Biology, 2019, 17, e3000162.	5.6	72
11	Comparative study of sex pheromone composition and biosynthesis in Helicoverpa armigera, H. assulta and their hybrid. Insect Biochemistry and Molecular Biology, 2005, 35, 575-583.	2.7	71
12	Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize. Phytochemistry, 2006, 67, 34-42.	2.9	67
13	Neofunctionalization in an ancestral insect desaturase lineage led to rare î"6 pheromone signals in the Chinese tussah silkworm. Insect Biochemistry and Molecular Biology, 2010, 40, 742-751.	2.7	67
14	Unique function of a chemosensory protein in the proboscis of two <i>Helicoverpa</i> species. Journal of Experimental Biology, 2014, 217, 1821-6.	1.7	67
15	The Molecular Basis of Host Selection in a Crucifer-Specialized Moth. Current Biology, 2020, 30, 4476-4482.e5.	3.9	67
16	Two single-point mutations shift the ligand selectivity of a pheromone receptor between two closely related moth species. ELife, 2017, 6, .	6.0	63
17	Design of larval chemical attractants based on odorant response spectra of odorant receptors in the cotton bollworm. Insect Biochemistry and Molecular Biology, 2017, 84, 48-62.	2.7	52
18	Specific olfactory neurons and glomeruli are associated to differences in behavioral responses to pheromone components between two Helicoverpa species. Frontiers in Behavioral Neuroscience, 2015, 9, 206.	2.0	51

CHEN-ZHU WANG

#	Article	IF	CITATIONS
19	Tarsal taste neuron activity and proboscis extension reflex in response to sugars and amino acids in <i>Helicoverpa armigera</i> (HA¼bner). Journal of Experimental Biology, 2010, 213, 2889-2895.	1.7	50
20	A moth odorant receptor highly expressed in the ovipositor is involved in detecting host-plant volatiles. ELife, 2020, 9, .	6.0	43
21	A Lysine at the C-Terminus of an Odorant-Binding Protein is Involved in Binding Aldehyde Pheromone Components in Two Helicoverpa Species. PLoS ONE, 2013, 8, e55132.	2.5	40
22	Similar attractiveness of maize volatiles induced by Helicoverpa armigera and Pseudaletia separata to the generalist parasitoid Campoletis chlorideae. Entomologia Experimentalis Et Applicata, 2006, 118, 87-96.	1.4	39
23	The ethological significance and olfactory detection of herbivore-induced plant volatiles in interactions of plants, herbivorous insects, and parasitoids. Arthropod-Plant Interactions, 2019, 13, 161-179.	1.1	39
24	Olfactory perception and behavioral effects of sex pheromone gland components in Helicoverpa armigera and Helicoverpa assulta. Scientific Reports, 2016, 6, 22998.	3.3	38
25	Sequencing and characterization of six cDNAs putatively encoding three pairs of pheromone receptors in two sibling species, Helicoverpa armigera and Helicoverpa assulta. Journal of Insect Physiology, 2010, 56, 586-593.	2.0	34
26	Peripheral Coding of Sex Pheromone Blends with Reverse Ratios in Two Helicoverpa Species. PLoS ONE, 2013, 8, e70078.	2.5	34
27	An odorant receptor and glomerulus responding to farnesene in Helicoverpa assulta (Lepidoptera:) Tj ETQq1 1 0	.784314 rg 2.7	gBŢ <u>/</u> Overlo <mark>c</mark>
28	An odorant receptor mediates the attractiveness of <i>cis</i> â€jasmone to <i>Campoletis chlorideae,</i> the endoparasitoid of <i>Helicoverpa armigera</i> . Insect Molecular Biology, 2019, 28, 23-34.	2.0	32
29	Genetic analysis of larval host-plant preference in two sibling species of Helicoverpa. Entomologia Experimentalis Et Applicata, 2006, 118, 221-228.	1.4	30
30	Electrophysiological and behavioral responses of Helicoverpa assulta (Lepidoptera: Noctuidae) to tobacco volatiles. Arthropod-Plant Interactions, 2012, 6, 375-384.	1.1	30
31	Identification of a gustatory receptor tuned to sinigrin in the cabbage butterfly Pieris rapae. PLoS Genetics, 2021, 17, e1009527.	3.5	29
32	Mechanisms of premating isolation between Helicoverpa armigera (Hübner) and Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae). Journal of Insect Physiology, 2007, 53, 170-178.	2.0	27
33	Interspecific competition between the ichneumonid CampoletisÂchlorideae and the braconid MicroplitisÂmediator in their host HelicoverpaÂarmigera. Entomologia Experimentalis Et Applicata, 2008, 127, 10-19.	1.4	26
34	Dissecting sex pheromone communication of Mythimna separata (Walker) in North China from receptor molecules and antennal lobes to behavior. Insect Biochemistry and Molecular Biology, 2019, 111, 103176.	2.7	26
35	A gustatory receptor tuned to the steroid plant hormone brassinolide in Plutella xylostella (Lepidoptera: Plutellidae). ELife, 2020, 9, .	6.0	25
36	Larval feeding induced defensive responses in tobacco: comparison of two sibling species of Helicoverpa with different diet breadths. Planta, 2007, 226, 215-224.	3.2	24

CHEN-ZHU WANG

#	Article	IF	CITATIONS
37	The olfactory reception of acetic acid and ionotropic receptors in the Oriental armyworm, Mythimna separata Walker. Insect Biochemistry and Molecular Biology, 2020, 118, 103312.	2.7	24
38	The Interactions between Soybean Trypsin Inhibitor and δ-Endotoxin of Bacillus thuringiensis in Helicoverpa armigera Larva. Journal of Invertebrate Pathology, 2000, 75, 259-266.	3.2	23
	Behavioral and electrophysiological responses of Helicoverpa assulta, H. armigera (Lepidoptera:) Tj ETQq1 1 0.78	34314 rgBT	[/Overlock]
39	Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2006, 192, 1037-1047.	1.6	22
40	Identification and testing of oviposition attractant chemical compounds for Musca domestica. Scientific Reports, 2016, 6, 33017.	3.3	22
41	Tarsal taste neurons of Helicoverpa assulta (Guenée) respond to sugars and amino acids, suggesting a role in feeding and oviposition. Journal of Insect Physiology, 2011, 57, 1332-1340.	2.0	21
42	Sexual differences in electrophysiological and behavioral responses of <i>Cydia molesta</i> to peach and pear volatiles. Entomologia Experimentalis Et Applicata, 2015, 157, 279-290.	1.4	21
43	Revisiting the sex pheromone of the fall armyworm <i>Spodoptera frugiperda</i> , a new invasive pest in South China. Insect Science, 2022, 29, 865-878.	3.0	21
44	Cloning and characterization of two Campoletis chlorideae ichnovirus vankyrin genes expressed in parasitized host Helicoverpa armigera. Journal of Insect Physiology, 2007, 53, 699-707.	2.0	20
45	Diet factors responsible for the change of the glucose oxidase activity in labial salivary glands of <i>Helicoverpa armigera</i> . Archives of Insect Biochemistry and Physiology, 2008, 68, 113-121.	1.5	20
46	Experience-based behavioral and chemosensory changes in the generalist insect herbivore Helicoverpa armigera exposed to two deterrent plant chemicals. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2010, 196, 791-799.	1.6	20
47	Expressional divergences of two desaturase genes determine the opposite ratios of two sex pheromone components in Helicoverpa armigera and Helicoverpa assulta. Insect Biochemistry and Molecular Biology, 2017, 90, 90-100.	2.7	20
48	Higher plasticity in feeding preference of a generalist than a specialist: experiments with two closely related Helicoverpa species. Scientific Reports, 2017, 7, 17876.	3.3	20
49	Plant-Based Natural Product Chemistry for Integrated Pest Management of Drosophila suzukii. Journal of Chemical Ecology, 2019, 45, 626-637.	1.8	19
50	Review of pheromone receptors in heliothine species: expression, function, and evolution. Entomologia Experimentalis Et Applicata, 2021, 169, 156-171.	1.4	19
51	Contribution of odorant binding proteins to olfactory detection of (Z)-11-hexadecenal in Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 2021, 131, 103554.	2.7	16
52	Functional analysis of pheromone receptor repertoire in the fall armyworm, <i>Spodoptera frugiperda</i> . Pest Management Science, 2022, 78, 2052-2064.	3.4	16
53	Superparasitism Behavior and Host Discrimination of <i>Campoletis chlorideae</i> (Ichneumonidae: Hymenoptera) Toward <i>Mythimna separata</i> (Noctuidae: Lepidoptera). Environmental Entomology, 2010, 39, 1249-1254.	1.4	14
54	Olfactory coding of intra- and interspecific pheromonal messages by the male Mythimna separata in North China. Insect Biochemistry and Molecular Biology, 2020, 125, 103439.	2.7	14

CHEN-ZHU WANG

#	Article	IF	CITATIONS
55	Genetic differentiation ofHelicoverpa armigera(Hübner) andH. assulta(Guenée) (Lepidoptera:) Tj ETQq1	l 0.784314 3.0	ŀrgBަOverloc
56	Host preference and suitability in the endoparasitoid <i>Campoletis chlorideae</i> is associated with its ability to suppress host immune responses. Ecological Entomology, 2013, 38, 173-182.	2.2	13
57	The cotton bollworm endoparasitoid Campoletis chlorideae is attracted by cis-jasmone or cis-3-hexenyl acetate but not by their mixtures. Arthropod-Plant Interactions, 2020, 14, 169-179.	1.1	13
58	CHARACTERIZATION OF GLUCOSEâ€INDUCED GLUCOSE OXIDASE GENE AND PROTEIN EXPRESSION IN <i><scp>H</scp>elicoverpa armigera</i> LARVAE. Archives of Insect Biochemistry and Physiology, 2012, 79, 104-119.	1.5	12
59	Genetic basis of sex pheromone blend difference between Helicoverpa armigera (Hübner) and Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae). Journal of Insect Physiology, 2008, 54, 813-817.	2.0	11
60	Differential immunosuppression by Campoletis chlorideae eggs and ichnovirus in larvae of Helicoverpa armigera and Spodoptera exigua. Journal of Invertebrate Pathology, 2015, 130, 88-96.	3.2	9
61	Expressional divergence of insect GOX genes: From specialist to generalist glucose oxidase. Journal of Insect Physiology, 2017, 100, 21-27.	2.0	9
62	Comparison of functions of pheromone receptor repertoires in Helicoverpa armigera and Helicoverpa assulta using a Drosophila expression system. Insect Biochemistry and Molecular Biology, 2022, 141, 103702.	2.7	9
63	INHERITANCE OF ELECTROPHYSIOLOGICAL RESPONSES TO LEAF SAPS OF HOST―AND NONHOST PLANTS I TWO <i>Helicoverpa</i> SPECIES AND THEIR HYBRIDS. Archives of Insect Biochemistry and Physiology, 2014, 86, 19-32.	N 1.5	8
64	cDNA Cloning and Molecular Characterization of a Cysteine-rich Gene fromCampoletis chlorideaePolydnavirus. DNA Sequence, 2003, 14, 413-419.	0.7	7
65	Interpretation of the biological species concept from interspecific hybridization of two Helicoverpa species. Science Bulletin, 2007, 52, 284-286.	1.7	7
66	Expressional divergence of the fatty acid-amino acid conjugate-hydrolyzing aminoacylase 1 (L-ACY-1) in Helicoverpa armigera and Helicoverpa assulta. Scientific Reports, 2017, 7, 8721.	3.3	6
67	The Inheritance of the Pheromone Sensory System in Two Helicoverpa Species: Dominance of H. armigera and Possible Introgression from H. assulta. Frontiers in Cellular Neuroscience, 2016, 10, 302.	3.7	6
68	Identification, isolation and characterization of the antifeedant constituent of <i>Clausena anisata</i> against <i>Helicoverpa armigera</i> (Lepidoptera: Noctuidae). Insect Science, 2009, 16, 247-253.	3.0	5
69	Effects of NPF on larval taste responses and feeding behaviors in Ostrinia furnacalis. Journal of Insect Physiology, 2021, 133, 104276.	2.0	5
70	Habituation to a Deterrent Plant Alkaloid Develops Faster in the Specialist Herbivore Helicoverpa assulta Than in Its Generalist Congener Helicoverpa armigera and Coincides with Taste Neuron Desensitisation. Insects, 2022, 13, 21.	2.2	0