
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7380126/publications.pdf Version: 2024-02-01



DETER KOHI

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Structural and functional characterisation of cardiac fibroblasts. Cardiovascular Research, 2005, 65, 40-51.                                                                                                                                        | 3.8  | 782       |
| 2  | Macrophages Facilitate Electrical Conduction in the Heart. Cell, 2017, 169, 510-522.e20.                                                                                                                                                            | 28.9 | 703       |
| 3  | Fibroblast Network in Rabbit Sinoatrial Node. Circulation Research, 2004, 94, 828-835.                                                                                                                                                              | 4.5  | 317       |
| 4  | Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nature Reviews Drug<br>Discovery, 2016, 15, 620-638.                                                                                                              | 46.4 | 251       |
| 5  | Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Progress in Biophysics and Molecular Biology, 1999, 71, 91-138.                                                                       | 2.9  | 249       |
| 6  | Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission. Circulation Research, 2018, 122, 58-73.                                            | 4.5  | 225       |
| 7  | Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14852-14857.                                        | 7.1  | 217       |
| 8  | Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. Journal of Electrocardiology, 2005, 38, 45-50.                                                                                                                  | 0.9  | 206       |
| 9  | Axial Stretch of Rat Single Ventricular Cardiomyocytes Causes an Acute and Transient Increase in Ca<br><sup>2+</sup> Spark Rate. Circulation Research, 2009, 104, 787-795.                                                                          | 4.5  | 199       |
| 10 | Systems Biology: An Approach. Clinical Pharmacology and Therapeutics, 2010, 88, 25-33.                                                                                                                                                              | 4.7  | 198       |
| 11 | Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H699-H718. | 3.2  | 192       |
| 12 | Simultaneous Voltage and Calcium Mapping of Genetically Purified Human Induced Pluripotent Stem<br>Cell–Derived Cardiac Myocyte Monolayers. Circulation Research, 2012, 110, 1556-1563.                                                             | 4.5  | 187       |
| 13 | Cardiac Mechano-Gated Ion Channels and Arrhythmias. Circulation Research, 2016, 118, 311-329.                                                                                                                                                       | 4.5  | 173       |
| 14 | Fibroblast–myocyte electrotonic coupling: Does it occur in native cardiac tissue?. Journal of<br>Molecular and Cellular Cardiology, 2014, 70, 37-46.                                                                                                | 1.9  | 171       |
| 15 | Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study. Heart Rhythm, 2009, 6, 1641-1649.                                                                                                 | 0.7  | 163       |
| 16 | Palette of fluorinated voltage-sensitive hemicyanine dyes. Proceedings of the National Academy of<br>Sciences of the United States of America, 2012, 109, 20443-20448.                                                                              | 7.1  | 162       |
| 17 | Spatially and temporally distinct expression of fibroblast connexins after sheep ventricular infarction. Cardiovascular Research, 2004, 62, 415-425.                                                                                                | 3.8  | 157       |
| 18 | Systems biology and the virtual physiological human. Molecular Systems Biology, 2009, 5, 292.                                                                                                                                                       | 7.2  | 154       |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Part 5: Adult Basic Life Support: 2010 International Consensus on Cardiopulmonary Resuscitation and<br>Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation, 2010, 122,<br>S298-S324.        | 1.6  | 145       |
| 20 | A vision and strategy for the virtual physiological human in 2010 and beyond. Philosophical<br>Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2595-2614.                             | 3.4  | 136       |
| 21 | The Living Scar – Cardiac Fibroblasts and the Injured Heart. Trends in Molecular Medicine, 2016, 22,<br>99-114.                                                                                                           | 6.7  | 136       |
| 22 | Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1487-H1497.                      | 3.2  | 135       |
| 23 | Generation of histo-anatomically representative models of the individual heart: tools and application.<br>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367,<br>2257-2292. | 3.4  | 135       |
| 24 | Axial tubule junctions control rapid calcium signaling in atria. Journal of Clinical Investigation, 2016, 126, 3999-4015.                                                                                                 | 8.2  | 118       |
| 25 | Sudden cardiac death by Commotio cordis: role of mechano–electric feedback. Cardiovascular<br>Research, 2001, 50, 280-289.                                                                                                | 3.8  | 117       |
| 26 | Effects of mechanosensitive ion channels on ventricular electrophysiology: experimental and theoretical models. Experimental Physiology, 2006, 91, 307-321.                                                               | 2.0  | 115       |
| 27 | Imageâ€based models of cardiac structure in health and disease. Wiley Interdisciplinary Reviews: Systems<br>Biology and Medicine, 2010, 2, 489-506.                                                                       | 6.6  | 113       |
| 28 | Selected Contribution: Axial stretch increases spontaneous pacemaker activity in rabbit isolated sinoatrial node cells. Journal of Applied Physiology, 2000, 89, 2099-2104.                                               | 2.5  | 99        |
| 29 | Histo-anatomical structure of the living isolated rat heart in two contraction states assessed by diffusion tensor MRI. Progress in Biophysics and Molecular Biology, 2012, 110, 319-330.                                 | 2.9  | 96        |
| 30 | Cardiac Mechano-Electric Coupling: Acute Effects of Mechanical Stimulation on Heart Rate and Rhythm. Physiological Reviews, 2021, 101, 37-92.                                                                             | 28.8 | 96        |
| 31 | Heterogeneous Cell Coupling in the Heart. Circulation Research, 2003, 93, 381-383.                                                                                                                                        | 4.5  | 93        |
| 32 | Rediscovering commotio cordis. Lancet, The, 2001, 357, 1195-1197.                                                                                                                                                         | 13.7 | 91        |
| 33 | Application of cardiac electrophysiology simulations to proâ€arrhythmic safety testing. British Journal of Pharmacology, 2012, 167, 932-945.                                                                              | 5.4  | 90        |
| 34 | Three-Dimensional Models of Individual Cardiac Histoanatomy: Tools and Challenges. Annals of the<br>New York Academy of Sciences, 2006, 1080, 301-319.                                                                    | 3.8  | 89        |
| 35 | Fibroblast–myocyte coupling in the heart: Potential relevance for therapeutic interventions. Journal of Molecular and Cellular Cardiology, 2016, 91, 238-246.                                                             | 1.9  | 87        |
| 36 | Structural and Functional Coupling of Cardiac Myocytes and Fibroblasts. , 2006, 42, 132-149.                                                                                                                              |      | 86        |

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Computational modelling of biological systems: tools and visions. Philosophical Transactions Series<br>A, Mathematical, Physical, and Engineering Sciences, 2000, 358, 579-610.                                                                      | 3.4  | 84        |
| 38 | Cardiac mechano-electric feedback: past, present, and prospect. Progress in Biophysics and Molecular<br>Biology, 2003, 82, 3-9.                                                                                                                      | 2.9  | 83        |
| 39 | Mechano-electric interactions in heterogeneous myocardium: development of fundamental<br>experimental and theoretical models. Progress in Biophysics and Molecular Biology, 2003, 82, 207-220.                                                       | 2.9  | 81        |
| 40 | Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging. Nature Methods, 2010, 7, 209-211.                                                                                                                                  | 19.0 | 79        |
| 41 | Micropatterned cell cultures on elastic membranes as an in vitro model of myocardium. Nature<br>Protocols, 2006, 1, 1379-1391.                                                                                                                       | 12.0 | 77        |
| 42 | Primary cilia defects causing mitral valve prolapse. Science Translational Medicine, 2019, 11, .                                                                                                                                                     | 12.4 | 76        |
| 43 | Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): Standardised reporting<br>for model reproducibility, interoperability, and data sharing. Progress in Biophysics and Molecular<br>Biology, 2011, 107, 4-10.                 | 2.9  | 75        |
| 44 | Oneâ€Đimensional Rabbit Sinoatrial Node Models:. Journal of Cardiovascular Electrophysiology, 2003,<br>14, S121-S132.                                                                                                                                | 1.7  | 74        |
| 45 | A vision and strategy for the virtual physiological human: 2012 update. Interface Focus, 2013, 3, 20130004.                                                                                                                                          | 3.0  | 74        |
| 46 | Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies. Cardiovascular Research, 2013, 97, 601-611.                                                                               | 3.8  | 72        |
| 47 | Microstructured Cocultures of Cardiac Myocytes and Fibroblasts: A Two-Dimensional <i>In<br/>Vitro</i> Model of Cardiac Tissue. Microscopy and Microanalysis, 2005, 11, 249-259.                                                                      | 0.4  | 71        |
| 48 | Potassium channel-based optogenetic silencing. Nature Communications, 2018, 9, 4611.                                                                                                                                                                 | 12.8 | 71        |
| 49 | Mechano-sensitivity of cardiac pacemaker function: Pathophysiological relevance, experimental<br>implications, and conceptual integration with other mechanisms of rhythmicity. Progress in<br>Biophysics and Molecular Biology, 2012, 110, 257-268. | 2.9  | 70        |
| 50 | Rearrangement of Atrial Bundle Architecture and Consequent Changes in Anisotropy of Conduction<br>Constitute the 3-Dimensional Substrate for Atrial Fibrillation. Circulation: Arrhythmia and<br>Electrophysiology, 2013, 6, 967-975.                | 4.8  | 67        |
| 51 | CELLULAR OPEN RESOURCE (COR): A PUBLIC CELLML BASED ENVIRONMENT FOR MODELING BIOLOGICAL FUNCTION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2003, 13, 3579-3590.                                           | 1.7  | 65        |
| 52 | Sodium permeable and "hypersensitive― <scp>TREK</scp> â€1 channels cause ventricular tachycardia.<br>EMBO Molecular Medicine, 2017, 9, 403-414.                                                                                                      | 6.9  | 65        |
| 53 | Single-sensor system for spatially resolved, continuous, and multiparametric optical mapping of cardiac tissue. Heart Rhythm, 2011, 8, 1482-1491.                                                                                                    | 0.7  | 64        |
| 54 | Rabbit-specific ventricular model of cardiac electrophysiological function including specialized conduction system. Progress in Biophysics and Molecular Biology, 2011, 107, 90-100.                                                                 | 2.9  | 62        |

| #  | Article                                                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Mechanosensitive connective tissue: potential influence on heart rhythm. Cardiovascular Research,<br>1996, 32, 62-68.                                                                                                                                                                                                   | 3.8  | 61        |
| 56 | Fibroblast–myocyte connections in the heart. Heart Rhythm, 2012, 9, 461-464.                                                                                                                                                                                                                                            | 0.7  | 61        |
| 57 | The NSL complex maintains nuclear architecture stability via lamin A/C acetylation. Nature Cell Biology, 2019, 21, 1248-1260.                                                                                                                                                                                           | 10.3 | 61        |
| 58 | The Systems Biology Approach to Drug Development: Application to Toxicity Assessment of Cardiac Drugs. Clinical Pharmacology and Therapeutics, 2010, 88, 130-134.                                                                                                                                                       | 4.7  | 60        |
| 59 | High resolution structural evidence suggests the Sarcoplasmic Reticulum forms microdomains with Acidic Stores (lysosomes) in the heart. Scientific Reports, 2017, 7, 40620.                                                                                                                                             | 3.3  | 59        |
| 60 | Species- and Preparation-Dependence of Stretch Effects on Sino-Atrial Node Pacemaking. Annals of the<br>New York Academy of Sciences, 2005, 1047, 324-335.                                                                                                                                                              | 3.8  | 58        |
| 61 | Molecular candidates for cardiac stretch-activated ion channels. Global Cardiology Science & Practice, 2014, 2014, 19.                                                                                                                                                                                                  | 0.4  | 58        |
| 62 | Cardiac mechano-electric coupling research: Fifty years of progress and scientific innovation.<br>Progress in Biophysics and Molecular Biology, 2014, 115, 71-75.                                                                                                                                                       | 2.9  | 58        |
| 63 | Effect of stretch-activated channels on defibrillation efficacy. Heart Rhythm, 2004, 1, 67-77.                                                                                                                                                                                                                          | 0.7  | 57        |
| 64 | Effects of acute ventricular volume manipulation on in situ cardiomyocyte cell membrane configuration. Progress in Biophysics and Molecular Biology, 2003, 82, 221-227.                                                                                                                                                 | 2.9  | 56        |
| 65 | Induction of ventricular arrhythmias following mechanical impact: A simulation study in 3D. Journal of Molecular Histology, 2004, 35, 679-686.                                                                                                                                                                          | 2.2  | 56        |
| 66 | Dimensionality in cardiac modelling. Progress in Biophysics and Molecular Biology, 2005, 87, 47-66.                                                                                                                                                                                                                     | 2.9  | 52        |
| 67 | Cardiac tissue slices: preparation, handling, and successful optical mapping. American Journal of<br>Physiology - Heart and Circulatory Physiology, 2015, 308, H1112-H1125.                                                                                                                                             | 3.2  | 52        |
| 68 | Utility of pre-cordial thump for treatment of out of hospital cardiac arrest: A prospective study.<br>Resuscitation, 2009, 80, 17-23.                                                                                                                                                                                   | 3.0  | 49        |
| 69 | Caveolae in Rabbit Ventricular Myocytes: Distribution and Dynamic Diminution after CellÂIsolation.<br>Biophysical Journal, 2017, 113, 1047-1059.                                                                                                                                                                        | 0.5  | 49        |
| 70 | Extent and spatial distribution of left atrial arrhythmogenic sites, late gadolinium enhancement at magnetic resonance imaging, and low-voltage areas in patients with persistent atrial fibrillation: comparison of imaging vs. electrical parameters of fibrosis and arrhythmogenesis. Europace, 2019, 21, 1484-1493. | 1.7  | 49        |
| 71 | Cell-accurate optical mapping across the entire developing heart. ELife, 2017, 6, .                                                                                                                                                                                                                                     | 6.0  | 48        |
| 72 | Mechanical Induction of Arrhythmias during Ventricular Repolarization: Modeling Cellular<br>Mechanisms and Their Interaction in Two Dimensions. Annals of the New York Academy of Sciences,<br>2004, 1015, 133-143.                                                                                                     | 3.8  | 47        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Images as drivers of progress in cardiac computational modelling. Progress in Biophysics and<br>Molecular Biology, 2014, 115, 198-212.                                                                                                   | 2.9 | 47        |
| 74 | Resolving Fine Cardiac Structures in Rats with High-Resolution Diffusion Tensor Imaging. Scientific Reports, 2016, 6, 30573.                                                                                                             | 3.3 | 47        |
| 75 | Rabbit models of cardiac mechano-electric and mechano-mechanical coupling. Progress in Biophysics and Molecular Biology, 2016, 121, 110-122.                                                                                             | 2.9 | 46        |
| 76 | Quantitative assessment of passive electrical properties of the cardiac T-tubular system by FRAP<br>microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2017,<br>114, 5737-5742.                | 7.1 | 46        |
| 77 | Axial stretch enhances sarcoplasmic reticulum Ca2+ leak and cellular Ca2+ reuptake in guinea pig<br>ventricular myocytes: Experiments and models. Progress in Biophysics and Molecular Biology, 2008,<br>97, 298-311.                    | 2.9 | 45        |
| 78 | Cellular Open Resource (COR): current status and future directions. Philosophical Transactions<br>Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1885-1905.                                                      | 3.4 | 45        |
| 79 | Myocardial ischemia lowers precordial thump efficacy: An inquiry into mechanisms using three-dimensional simulations. Heart Rhythm, 2006, 3, 179-186.                                                                                    | 0.7 | 44        |
| 80 | MECHANICAL INTERACTION OF HETEROGENEOUS CARDIAC MUSCLE SEGMENTS IN SILICO: EFFECTS ON Ca2+<br>HANDLING AND ACTION POTENTIAL. International Journal of Bifurcation and Chaos in Applied Sciences<br>and Engineering, 2003, 13, 3757-3782. | 1.7 | 43        |
| 81 | Piezo1 Channels Contribute to the Regulation of Human Atrial Fibroblast Mechanical Properties and<br>Matrix Stiffness Sensing. Cells, 2021, 10, 663.                                                                                     | 4.1 | 43        |
| 82 | Role of the 293b-sensitive, slowly activating delayed rectifier potassium current, iKs, in pacemaker activity of rabbit isolated sino-atrial node cells. Cardiovascular Research, 2002, 53, 68-79.                                       | 3.8 | 42        |
| 83 | Assessment of contractility in intact ventricular cardiomyocytes using the dimensionless<br>â€ <sup>-</sup> Frank–Starling Gain' index. Pflugers Archiv European Journal of Physiology, 2011, 462, 39-48.                                | 2.8 | 42        |
| 84 | Mathematical models in physiology. Philosophical Transactions Series A, Mathematical, Physical, and<br>Engineering Sciences, 2006, 364, 1099-1106.                                                                                       | 3.4 | 41        |
| 85 | Cardiac myocyte–nonmyocyte electrotonic coupling: Implications for ventricular arrhythmogenesis.<br>Heart Rhythm, 2007, 4, 233-235.                                                                                                      | 0.7 | 41        |
| 86 | Editorial. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 2975-2978.                                                                                                                  | 3.4 | 39        |
| 87 | Inhibition of macrophage proliferation dominates plaque regression in response to cholesterol<br>lowering. Basic Research in Cardiology, 2020, 115, 78.                                                                                  | 5.9 | 37        |
| 88 | Load-dependent effects of apelin on murine cardiomyocytes. Progress in Biophysics and Molecular<br>Biology, 2017, 130, 333-343.                                                                                                          | 2.9 | 36        |
| 89 | Cardiac Electrophysiological Effects of Light-Activated Chloride Channels. Frontiers in Physiology, 2018, 9, 1806.                                                                                                                       | 2.8 | 36        |
| 90 | In Situ Optical Mapping of Voltage and Calcium in the Heart. PLoS ONE, 2012, 7, e42562.                                                                                                                                                  | 2.5 | 36        |

| #   | Article                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Swellingâ€induced decrease in spontaneous pacemaker activity of rabbit isolated sinoâ€atrial node cells.<br>Acta Physiologica Scandinavica, 1998, 164, 1-12.                                                                                                                                  | 2.2 | 35        |
| 92  | Force Generation for Locomotion of Vertebrates: Skeletal Muscle Overview. IEEE Journal of Oceanic Engineering, 2004, 29, 684-691.                                                                                                                                                             | 3.8 | 35        |
| 93  | Modulatory effect of calmodulin-dependent kinase II (CaMKII) on sarcoplasmic reticulum Ca 2+<br>handling and interval–force relations: a modelling study. Philosophical Transactions Series A,<br>Mathematical, Physical, and Engineering Sciences, 2006, 364, 1107-1133.                     | 3.4 | 35        |
| 94  | Mechanically Induced Ectopy via Stretch-Activated Cation-Nonselective Channels Is Caused by Local<br>Tissue Deformation and Results in Ventricular Fibrillation if Triggered on the Repolarization Wave<br>Edge (Commotio Cordis). Circulation: Arrhythmia and Electrophysiology, 2017, 10, . | 4.8 | 35        |
| 95  | Electron tomography of rabbit cardiomyocyte three-dimensional ultrastructure. Progress in<br>Biophysics and Molecular Biology, 2016, 121, 77-84.                                                                                                                                              | 2.9 | 34        |
| 96  | Myocardial tissue slices: organotypic pseudo-2D models for cardiac research & development.<br>Future Cardiology, 2009, 5, 425-430.                                                                                                                                                            | 1.2 | 32        |
| 97  | Simultaneous measurement and modulation of multiple physiological parameters in the isolated heart using optical techniques. Pflugers Archiv European Journal of Physiology, 2012, 464, 403-414.                                                                                              | 2.8 | 32        |
| 98  | Influence of left atrial size on P-wave morphology: differential effects of dilation and hypertrophy.<br>Europace, 2018, 20, iii36-iii44.                                                                                                                                                     | 1.7 | 32        |
| 99  | Progressive changes in <i>T</i> <sub>1</sub> , <i>T</i> <sub>2</sub> and leftâ€ventricular histoâ€architecture in the fixed and embedded rat heart. NMR in Biomedicine, 2011, 24, 836-843.                                                                                                    | 2.8 | 31        |
| 100 | Fast Measurement of Sarcomere Length and Cell Orientation in Langendorff-Perfused Hearts Using Remote Focusing Microscopy. Circulation Research, 2013, 113, 863-870.                                                                                                                          | 4.5 | 30        |
| 101 | Mechanoâ€electric and mechanoâ€chemoâ€transduction in cardiomyocytes. Journal of Physiology, 2020,<br>598, 1285-1305.                                                                                                                                                                         | 2.9 | 30        |
| 102 | Passive myocardial mechanical properties: meaning, measurement, models. Biophysical Reviews, 2021, 13, 587-610.                                                                                                                                                                               | 3.2 | 30        |
| 103 | Optogenetic targeting of cardiac myocytes and non-myocytes: Tools, challenges and utility. Progress in Biophysics and Molecular Biology, 2017, 130, 140-149.                                                                                                                                  | 2.9 | 28        |
| 104 | Cardiac fibroblasts. Herzschrittmachertherapie Und Elektrophysiologie, 2018, 29, 62-69.                                                                                                                                                                                                       | 0.8 | 27        |
| 105 | Small Conductance Ca2 +-Activated K+ (SK) Channel mRNA Expression in Human Atrial and Ventricular<br>Tissue: Comparison Between Donor, Atrial Fibrillation and Heart Failure Tissue. Frontiers in<br>Physiology, 2021, 12, 650964.                                                            | 2.8 | 27        |
| 106 | Sub-microscopic analysis of t-tubule geometry in living cardiac ventricular myocytes using a shape-based analysis method. Journal of Molecular and Cellular Cardiology, 2017, 108, 1-7.                                                                                                       | 1.9 | 26        |
| 107 | Beat-by-Beat Cardiomyocyte T-Tubule Deformation Drives Tubular Content Exchange. Circulation Research, 2021, 128, 203-215.                                                                                                                                                                    | 4.5 | 26        |
| 108 | Piezo1 and BKCa channels in human atrial fibroblasts: Interplay and remodelling in atrial fibrillation.<br>Journal of Molecular and Cellular Cardiology, 2021, 158, 49-62.                                                                                                                    | 1.9 | 26        |

| #   | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Cardiac cellular heterogeneity and remodelling. Cardiovascular Research, 2004, 64, 195-197.                                                                                                                                    | 3.8 | 25        |
| 110 | Sinoatrial Node Structure, Mechanics, Electrophysiology and the Chronotropic Response to Stretch in Rabbit and Mouse. Frontiers in Physiology, 2020, 11, 809.                                                                  | 2.8 | 25        |
| 111 | Systems biology of the heart: hype or hope?. Annals of the New York Academy of Sciences, 2011, 1245, 40-43.                                                                                                                    | 3.8 | 24        |
| 112 | Mechanical modulation of the transverse tubular system of ventricular cardiomyocytes. Progress in<br>Biophysics and Molecular Biology, 2012, 110, 218-225.                                                                     | 2.9 | 24        |
| 113 | Mapping cardiac microstructure of rabbit heart in different mechanical states by high resolution<br>diffusion tensor imaging: A proof-of-principle study. Progress in Biophysics and Molecular Biology,<br>2016, 121, 85-96.   | 2.9 | 24        |
| 114 | Junctophilin-2 expression rescues atrial dysfunction through polyadic junctional membrane complex biogenesis. JCI Insight, 2019, 4, .                                                                                          | 5.0 | 23        |
| 115 | Three-dimensional histology: tools and application to quantitative assessment of cell-type distribution in rabbit heart. Europace, 2014, 16, iv86-iv95.                                                                        | 1.7 | 22        |
| 116 | Living cardiac tissue slices: An organotypic pseudo two-dimensional model for cardiac biophysics research. Progress in Biophysics and Molecular Biology, 2014, 115, 314-327.                                                   | 2.9 | 22        |
| 117 | Prolongation of atrio-ventricular node conduction in a rabbit model of ischaemic cardiomyopathy:<br>Role of fibrosis and connexin remodelling. Journal of Molecular and Cellular Cardiology, 2016, 94,<br>54-64.               | 1.9 | 22        |
| 118 | Quantitative Study of the Effect of Tissue Microstructure on Contraction in a Computational Model of Rat Left Ventricle. PLoS ONE, 2014, 9, e92792.                                                                            | 2.5 | 20        |
| 119 | Interrogation of living myocardium in multiple static deformation states with diffusion tensor and diffusion spectrum imaging. Progress in Biophysics and Molecular Biology, 2014, 115, 213-225.                               | 2.9 | 19        |
| 120 | The cardiac muscle duplex as a method to study myocardial heterogeneity. Progress in Biophysics and<br>Molecular Biology, 2014, 115, 115-128.                                                                                  | 2.9 | 19        |
| 121 | Mechano-electric heterogeneity of the myocardium as a paradigm of its function. Progress in<br>Biophysics and Molecular Biology, 2016, 120, 249-254.                                                                           | 2.9 | 19        |
| 122 | Species differences in the morphology of transverse tubule openings in cardiomyocytes. Europace, 2018, 20, iii120-iii124.                                                                                                      | 1.7 | 19        |
| 123 | Nano-scale morphology of cardiomyocyte t-tubule/sarcoplasmic reticulum junctions revealed by<br>ultra-rapid high-pressure freezing and electron tomography. Journal of Molecular and Cellular<br>Cardiology, 2021, 153, 86-92. | 1.9 | 19        |
| 124 | Novel insights into the electrophysiology of murine cardiac macrophages: relevance of voltage-gated potassium channels. Cardiovascular Research, 2022, 118, 798-813.                                                           | 3.8 | 18        |
| 125 | Electron-conformational model of ryanodine receptor lattice dynamics. Progress in Biophysics and<br>Molecular Biology, 2006, 90, 88-103.                                                                                       | 2.9 | 17        |
| 126 | The virtual physiological human: computer simulation for integrative biomedicine I. Philosophical<br>Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2591-2594.                            | 3.4 | 17        |

| #   | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | In Vivo Post–Cardiac Arrest Myocardial Dysfunction Is Supported by Ca <sup>2+</sup><br>/Calmodulin-Dependent Protein Kinase II–Mediated Calcium Long-Term Potentiation and Mitigated by<br>Alda-1, an Agonist of Aldehyde Dehydrogenase Type 2. Circulation, 2016, 134, 961-977. | 1.6  | 17        |
| 128 | Extracorporeal cardiac mechanical stimulation: precordial thump and precordial percussion. British<br>Medical Bulletin, 2010, 93, 161-177.                                                                                                                                       | 6.9  | 16        |
| 129 | Virtual physiological human: training challenges. Philosophical Transactions Series A, Mathematical,<br>Physical, and Engineering Sciences, 2010, 368, 2841-2851.                                                                                                                | 3.4  | 15        |
| 130 | Comparing maximum rate and sustainability of pacing by mechanical vs. electrical stimulation in the Langendorff-perfused rabbit heart. Europace, 2016, 18, iv85-iv93.                                                                                                            | 1.7  | 15        |
| 131 | Transformation diffusion reconstruction of three-dimensional histology volumes from two-dimensional image stacks. Medical Image Analysis, 2017, 38, 184-204.                                                                                                                     | 11.6 | 15        |
| 132 | Monte Carlo Simulations of Diffusion Weighted MRI in Myocardium: Validation and Sensitivity Analysis. IEEE Transactions on Medical Imaging, 2017, 36, 1316-1325.                                                                                                                 | 8.9  | 15        |
| 133 | Comparative study of rabbit sino-atrial node cell models. Chaos, Solitons and Fractals, 2002, 13, 1623-1630.                                                                                                                                                                     | 5.1  | 14        |
| 134 | Hybrid duplex: a novel method to study the contractile function of heterogeneous myocardium.<br>American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2733-H2746.                                                                                       | 3.2  | 14        |
| 135 | Soft tissue impact characterisation kit (STICK) for ex situ investigation of heart rhythm responses to acute mechanical stimulation. Progress in Biophysics and Molecular Biology, 2006, 90, 444-468.                                                                            | 2.9  | 14        |
| 136 | Solute movement in the t-tubule system of rabbit and mouse cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7073-E7080.                                                                                              | 7.1  | 14        |
| 137 | Human Atrial Fibroblast Adaptation to Heterogeneities in Substrate Stiffness. Frontiers in Physiology, 2019, 10, 1526.                                                                                                                                                           | 2.8  | 14        |
| 138 | The Virtual Physiological Human. Interface Focus, 2011, 1, 281-285.                                                                                                                                                                                                              | 3.0  | 13        |
| 139 | Opportunities and challenges of current electrophysiology research: a plea to establish<br>'translational electrophysiology' curricula. Europace, 2015, 17, 825-833.                                                                                                             | 1.7  | 13        |
| 140 | Expression and function of mechanosensitive ion channels in human valve interstitial cells. PLoS ONE, 2020, 15, e0240532.                                                                                                                                                        | 2.5  | 13        |
| 141 | Evaluation of nonâ€Gaussian diffusion in cardiac MRI. Magnetic Resonance in Medicine, 2017, 78, 1174-1186.                                                                                                                                                                       | 3.0  | 12        |
| 142 | Life and mechanosensitivity. Progress in Biophysics and Molecular Biology, 2008, 97, 159-162.                                                                                                                                                                                    | 2.9  | 11        |
| 143 | The virtual physiological human: tools and applications I. Philosophical Transactions Series A,<br>Mathematical, Physical, and Engineering Sciences, 2009, 367, 1817-1821.                                                                                                       | 3.4  | 11        |
| 144 | The virtual physiological human: computer simulation for integrative biomedicine II. Philosophical<br>Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2837-2839.                                                                             | 3.4  | 11        |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Spatial regulation of intracellular pH in multicellular strands of neonatal rat cardiomyocytes.<br>Cardiovascular Research, 2010, 85, 729-738.                                                                    | 3.8 | 11        |
| 146 | The Role of Blood Vessels in Rabbit Propagation Dynamics and Cardiac Arrhythmias. Lecture Notes in Computer Science, 2009, , 268-276.                                                                             | 1.3 | 11        |
| 147 | Cardiac electrophysiological imaging systems scalable for high-throughput drug testing. Pflugers<br>Archiv European Journal of Physiology, 2012, 464, 645-656.                                                    | 2.8 | 10        |
| 148 | Integrative approaches to computational biomedicine. Interface Focus, 2013, 3, 20130003.                                                                                                                          | 3.0 | 10        |
| 149 | Organotypic myocardial slices as model system to study heterocellular interactions. Cardiovascular<br>Research, 2018, 114, 3-6.                                                                                   | 3.8 | 9         |
| 150 | The Lectin LecA Sensitizes the Human Stretch-Activated Channel TREK-1 but Not Piezo1 and Binds Selectively to Cardiac Non-myocytes. Frontiers in Physiology, 2020, 11, 457.                                       | 2.8 | 8         |
| 151 | High Performance Computer Simulations of Cardiac Electrical Function Based on High Resolution MRI<br>Datasets. Lecture Notes in Computer Science, 2008, , 571-580.                                                | 1.3 | 8         |
| 152 | Digital Human Modelling: A Global Vision and a European Perspective. Lecture Notes in Computer<br>Science, 2007, , 549-558.                                                                                       | 1.3 | 8         |
| 153 | Consecutive-Day Ventricular and Atrial Cardiomyocyte Isolations from the Same Heart: Shifting the<br>Cost–Benefit Balance of Cardiac Primary Cell Research. Cells, 2022, 11, 233.                                 | 4.1 | 8         |
| 154 | The virtual physiological human: tools and applications II. Philosophical Transactions Series A,<br>Mathematical, Physical, and Engineering Sciences, 2009, 367, 2121-2123.                                       | 3.4 | 7         |
| 155 | Microscopic magnetic resonance imaging reveals high prevalence of third coronary artery in human and rabbit heart. Europace, 2012, 14, v73-v81.                                                                   | 1.7 | 7         |
| 156 | Structural and Functional Recoupling ofÂAtrial and Ventricular Myocardium. Journal of the American<br>College of Cardiology, 2014, 64, 2586-2588.                                                                 | 2.8 | 7         |
| 157 | A Novel Method for Quantifying the Contribution of Different Intracellular Mechanisms to<br>Mechanically Induced Changes in Action Potential Characteristics. Lecture Notes in Computer<br>Science, 2003, , 8-17. | 1.3 | 6         |
| 158 | Editorial. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 3223-3224.                                                                                           | 3.4 | 6         |
| 159 | Using high-resolution displays for high-resolution cardiac data. Philosophical Transactions Series A,<br>Mathematical, Physical, and Engineering Sciences, 2009, 367, 2667-2677.                                  | 3.4 | 6         |
| 160 | Follow the white rabbit. Progress in Biophysics and Molecular Biology, 2016, 121, 75-76.                                                                                                                          | 2.9 | 6         |
| 161 | Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building<br>blocks of the secondary pacemaker region. Cellular and Molecular Life Sciences, 2021, 78, 6669-6687.      | 5.4 | 6         |
|     |                                                                                                                                                                                                                   |     |           |

Anti-arrhythmic effects of acute mechanical stimulation. , 2011, , 361-368.

| #   | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Novel Optics-Based Approaches for Cardiac Electrophysiology: A Review. Frontiers in Physiology, 2021, 12, 769586.                                                                                                           | 2.8  | 6         |
| 164 | AN ITERATIVE METHOD FOR REGISTRATION OF HIGH-RESOLUTION CARDIAC HISTOANATOMICAL AND MRI IMAGES. , 2007, , .                                                                                                                 |      | 5         |
| 165 | Mechano-Electric Feedback in the Heart: Effects on Heart Rate and Rhythm. , 2011, , 133-151.                                                                                                                                |      | 5         |
| 166 | Off-patient assessment of pre-cordial impact mechanics among medical professionals in North-East<br>Italy involved in emergency cardiac resuscitation. Progress in Biophysics and Molecular Biology, 2012,<br>110, 390-396. | 2.9  | 5         |
| 167 | A Bioreactor to Apply Multimodal Physical Stimuli to Cultured Cells. Methods in Molecular Biology, 2016, 1502, 21-33.                                                                                                       | 0.9  | 5         |
| 168 | Quantitative collagen assessment in right ventricular myectomies from patients with tetralogy of Fallot. Europace, 2021, 23, i38-i47.                                                                                       | 1.7  | 5         |
| 169 | Mechanical triggers and facilitators of ventricular tachy-arrhythmias. , 2011, , 160-167.                                                                                                                                   |      | 5         |
| 170 | Electron microscopy of cardiac 3D nanodynamics: form, function, future. Nature Reviews Cardiology, 2022, 19, 607-619.                                                                                                       | 13.7 | 5         |
| 171 | Benchmarking of Cph1 Mutants and <i>Dr</i> BphP for Lightâ€Responsive Phytochromeâ€Based Hydrogels<br>with Reversibly Adjustable Mechanical Properties. Advanced Biology, 2022, 6, e2000337.                                | 2.5  | 5         |
| 172 | P1-13. Heart Rhythm, 2006, 3, S111-S112.                                                                                                                                                                                    | 0.7  | 4         |
| 173 | 3D Visualization of Cardiac Anatomical MRI Data with Para-Cellular Resolution. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 147-51.                                 | 0.5  | 4         |
| 174 | Cardiac valve annulus manual segmentation using computer assisted visual feedback in three-dimensional image data. , 2010, 2010, 738-41.                                                                                    |      | 4         |
| 175 | Progress in Biophysics and Molecular Biology of the Beating Heart. Progress in Biophysics and Molecular Biology, 2012, 110, 151-153.                                                                                        | 2.9  | 4         |
| 176 | Electromechanical Assessment of Optogenetically Modulated Cardiomyocyte Activity. Journal of<br>Visualized Experiments, 2020, , .                                                                                           | 0.3  | 4         |
| 177 | Heterogeneity and Remodeling of Ion Currents in Cultured Right Atrial Fibroblasts From Patients<br>With Sinus Rhythm or Atrial Fibrillation. Frontiers in Physiology, 2021, 12, 673891.                                     | 2.8  | 4         |
| 178 | DIASTOLIC (DYS-)FUNCTION AND ELECTROPHYSIOLOGY. Cardiology Clinics, 2000, 18, 637-651.                                                                                                                                      | 2.2  | 3         |
| 179 | Resolving the Three-Dimensional Histology of the Heart. Lecture Notes in Computer Science, 2012, ,<br>2-16.                                                                                                                 | 1.3  | 3         |
| 180 | Effect of Fibre Orientation Optimisation in an Electromechanical Model of Left Ventricular<br>Contraction in Rat. Lecture Notes in Computer Science, 2013, , 46-53.                                                         | 1.3  | 3         |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | From ion channel to organismic phenotype: An example of integrative translational research into cardiac electromechanics. Heart Rhythm, 2013, 10, 1542-1543.                                                                    | 0.7 | 3         |
| 182 | Novel technologies as drivers of progress in cardiac biophysics. Progress in Biophysics and Molecular Biology, 2014, 115, 69-70.                                                                                                | 2.9 | 3         |
| 183 | Optimized radiofrequency coil setup for MR examination of living isolated rat hearts in a horizontal<br>9.4T magnet. Magnetic Resonance in Medicine, 2015, 73, 2398-2405.                                                       | 3.0 | 3         |
| 184 | Invasive Optical Pacing in Perfused, Optogenetically Modified Mouse Heart Using Stiff Multi-LED Optical Probes. , 2018, 2018, 1-4.                                                                                              |     | 3         |
| 185 | Progress in biophysics and molecular biology: A brief history of the journal. Progress in Biophysics and Molecular Biology, 2018, 140, 1-4.                                                                                     | 2.9 | 3         |
| 186 | Single cardiomyocytes from papillary muscles show lower preload-dependent activation of force compared to cardiomyocytes from the left ventricular free wall. Journal of Molecular and Cellular Cardiology, 2022, 166, 127-136. | 1.9 | 3         |
| 187 | Defining Commotio cordis. Heart Rhythm, 2005, 2, 902.                                                                                                                                                                           | 0.7 | 2         |
| 188 | To the Editor—Resolving the M-cell debate: Mechanics Matters. Heart Rhythm, 2011, 8, e1.                                                                                                                                        | 0.7 | 2         |
| 189 | Cardiac Stretch-Activated Channels and Mechano-Electric Coupling. , 2018, , 128-139.                                                                                                                                            |     | 2         |
| 190 | The Institute for Experimental Cardiovascular Medicine in Freiburg. Biophysical Reviews, 2019, 11, 675-677.                                                                                                                     | 3.2 | 2         |
| 191 | Rediscovering the third coronary artery. European Heart Journal, 2011, 32, 1435-7.                                                                                                                                              | 2.2 | 2         |
| 192 | Ask not what The Journal can do for you1. Journal of Physiology, 2022, 600, 1537-1538.                                                                                                                                          | 2.9 | 2         |
| 193 | Spike activity of bulbar respiratory neurons in cats with myocardial ischemia: Microelectrode study.<br>Bulletin of Experimental Biology and Medicine, 1988, 105, 776-780.                                                      | 0.8 | 1         |
| 194 | NON-MUSCARINIC AND NON-NICOTINIC INHIBITION BY THE ACETYLCHOLINE ANALOGUE CARBACHOL OF THE DELAYED RECTIFIER POTASSIUM CURRENT, i K, IN RABBIT ISOLATED SINO-ATRIAL NODE CELLS. Experimental Physiology, 1999, 84, 631-638.     | 2.0 | 1         |
| 195 | AB23-2. Heart Rhythm, 2006, 3, S47.                                                                                                                                                                                             | 0.7 | 1         |
| 196 | Rare syndromes, commotio cordis, sudden death in athletes. , 0, , 1148-1198.                                                                                                                                                    |     | 1         |
| 197 | Electrocardiography and imaging. Journal of Electrocardiology, 2007, 40, S66-S70.                                                                                                                                               | 0.9 | 1         |
| 198 | Finding the culprit: who is turning hearts to stone?. Stem Cell Investigation, 2017, 4, 33-33.                                                                                                                                  | 3.0 | 1         |

| #   | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Editorial. Progress in Biophysics and Molecular Biology, 2018, 132, 1-2.                                                                                                                                                                                | 2.9 | 1         |
| 200 | Mechanics and energetics in cardiac arrhythmias and heart failure. Journal of Physiology, 2020, 598,<br>1275-1277.                                                                                                                                      | 2.9 | 1         |
| 201 | Towards High-Resolution Cardiac Atlases: Ventricular Anatomy Descriptors for a Standardized Reference Frame. Lecture Notes in Computer Science, 2010, , 75-84.                                                                                          | 1.3 | 1         |
| 202 | Interrelation of Cardiac Fibroblasts and Myocytes: New Tools and Insights. Microscopy and Microanalysis, 2004, 10, 1398-1399.                                                                                                                           | 0.4 | 0         |
| 203 | P5-22. Heart Rhythm, 2006, 3, S267.                                                                                                                                                                                                                     | 0.7 | Ο         |
| 204 | Flash Photolysis of Caged Compounds during Simultaneous Imaging of Calcium and Voltage in the<br>Whole Heart using Light-Emitting-Diodes. Biophysical Journal, 2012, 102, 671a.                                                                         | 0.5 | 0         |
| 205 | Mechano-Electric Interactions and Their Role in Electrical Function of the Heart. , 2013, , 157-175.                                                                                                                                                    |     | 0         |
| 206 | Cardiac Stretch–Activated Channels and Mechano-Electric Coupling. , 2014, , 139-149.                                                                                                                                                                    |     | 0         |
| 207 | Editorial to "Disturbances of cardiac wavelength and repolarization precede torsade de pointes and<br>ventricular fibrillation in langendorff perfused rabbit hearts―by Luc Hondeghem. Progress in<br>Biophysics and Molecular Biology, 2016, 121, 1-2. | 2.9 | 0         |
| 208 | Editorial. Progress in Biophysics and Molecular Biology, 2019, 141, 1-2.                                                                                                                                                                                | 2.9 | 0         |
| 209 | PBMB Commentary on Editorial by Keith Baverstock. Progress in Biophysics and Molecular Biology, 2019, 149, 3.                                                                                                                                           | 2.9 | 0         |
| 210 | Concentric, Mems-Based Optoelectromechanical Pacer for Multimodal Cardiac Excitation. , 2020, , .                                                                                                                                                       |     | 0         |
| 211 | Mechanoelectric feedback in the human heart: A causal affair. Heart Rhythm, 2021, 18, 1414-1415.                                                                                                                                                        | 0.7 | 0         |
| 212 | High-resolution displays for high-resolution data. , 2009, , 18-20.                                                                                                                                                                                     |     | 0         |
| 213 | Which way to grow? Force over time may be the heart's Dao de jing. Global Cardiology Science & Practice, 2016, 2016, e201621.                                                                                                                           | 0.4 | 0         |
| 214 | Mechanoelectrical Interactions and Their Role in Electrical Function of the Heart. , 2008, , 145-160.                                                                                                                                                   |     | 0         |