
Daniel R Dietrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7380009/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicology and Applied Pharmacology, 2005, 203, 257-263.	2.8	430
2	Ochratoxin A: The Continuing Enigma. Critical Reviews in Toxicology, 2005, 35, 33-60.	3.9	340
3	Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal) Tj ETQq1 1 273-289.	0.784314 2.8	rgBT /Overlo 317
4	Water-borne diclofenac affects kidney and gill integrity and selected immune parameters in brown trout (Salmo trutta f. fario). Aquatic Toxicology, 2005, 75, 53-64.	4.0	283
5	Pathological and Biochemical Characterization of Microcystin-Induced Hepatopancreas and Kidney Damage in Carp (Cyprinus carpio). Toxicology and Applied Pharmacology, 2000, 164, 73-81.	2.8	263
6	Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environmental Microbiology, 2005, 7, 519-529.	3.8	252
7	Congener-Independent Immunoassay for Microcystins and Nodularins. Environmental Science & Technology, 2001, 35, 4849-4856.	10.0	236
8	Kinetic parameters and intraindividual fluctuations of ochratoxin A plasma levels in humans. Archives of Toxicology, 2000, 74, 499-510.	4.2	214
9	Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicology and Applied Pharmacology, 2005, 203, 231-242.	2.8	192
10	The occurrence of ochratoxin A in coffee. Food and Chemical Toxicology, 1995, 33, 341-355.	3.6	173
11	Toxicity of Microcystis aeruginosa peptide toxin to yearling rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 1994, 30, 215-224.	4.0	170
12	The role of organic anion transporting polypeptides (OATPs/SLCOs) in the toxicity of different microcystin congeners in vitro: A comparison of primary human hepatocytes and OATP-transfected HEK293 cells. Toxicology and Applied Pharmacology, 2010, 245, 9-20.	2.8	169
13	Toxicological and Pathological Applications of Proliferating Cell Nuclear Antigen (PCNA), A Novel Endogenous Marker for Cell Proliferation. Critical Reviews in Toxicology, 1993, 23, 77-109.	3.9	166
14	Biochemical characterization of microcystin toxicity in rainbow trout (Oncorhynchus mykiss). Toxicon, 1997, 35, 583-595.	1.6	148
15	Endocrine disruption: Fact or urban legend?. Toxicology Letters, 2013, 223, 295-305.	0.8	131
16	Cyanobacterial Toxins: Removal during Drinking Water Treatment, and Human Risk Assessment. Environmental Health Perspectives, 2000, 108, 113.	6.0	130
17	Oatp-associated uptake and toxicity of microcystins in primary murine whole brain cells. Toxicology and Applied Pharmacology, 2009, 234, 247-255.	2.8	130
18	Scientific principles for the identification of endocrine-disrupting chemicals: a consensus statement. Archives of Toxicology, 2017, 91, 1001-1006.	4.2	118

#	Article	IF	CITATIONS
19	Physiological Endpoints for Potential SSRI Interactions in Fish. Critical Reviews in Toxicology, 2008, 38, 215-247.	3.9	113
20	Environmental risk assessment of pharmaceutical drug substances—conceptual considerations. Toxicology Letters, 2002, 131, 97-104.	0.8	102
21	In vitro investigation of individual and combined cytotoxic effects of ochratoxin A and other selected mycotoxins on renal cells. Toxicology in Vitro, 2006, 20, 332-341.	2.4	102
22	Occurrence and elimination of cyanobacterial toxins in two Australian drinking water treatment plants. Toxicon, 2004, 43, 639-649.	1.6	99
23	Toxin content and cytotoxicity of algal dietary supplements. Toxicology and Applied Pharmacology, 2012, 265, 263-271.	2.8	93
24	Detection and Evaluation of Proliferating Cell Nuclear Antigen (PCNA) in Rat Tissue by an Improved Immunohistochemical Procedure. Journal of Histotechnology, 1991, 14, 237-241.	0.5	92
25	In vivo and in vitro assessment of the androgenic potential of a pulp and paper mill effluent. Environmental Toxicology and Chemistry, 2003, 22, 1448-1456.	4.3	91
26	Switching toxin production on and off: intermittent microcystin synthesis in a <i>Microcystis</i> bloom. Environmental Microbiology Reports, 2011, 3, 118-124.	2.4	91
27	Preneoplastic lesions in rodent kidney induced spontaneously or by non-genotoxic agents: predictive nature and comparison to lesions induced by genotoxic carcinogens. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1991, 248, 239-260.	1.0	87
28	Toxin production in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Toxicon, 2000, 38, 1731-1748.	1.6	84
29	Temperature-related changes in polar cyanobacterial mat diversity and toxin production. Nature Climate Change, 2012, 2, 356-360.	18.8	81
30	Presence ofPlanktothrix sp. and cyanobacterial toxins in Lake Ammersee, Germany and their impact on whitefish (Coregonus lavaretus L.). Environmental Toxicology, 2001, 16, 483-488.	4.0	80
31	Oral toxicity of the microcystin-containing cyanobacterium Planktothrix rubescens in European whitefish (Coregonus lavaretus). Aquatic Toxicology, 2006, 79, 31-40.	4.0	79
32	Biliary excretion of biochemically active cyanobacteria (blue-green algae) hepatotoxins in fish. Toxicology, 1996, 106, 123-130.	4.2	78
33	Investigation of Microcystin Congener–Dependent Uptake into Primary Murine Neurons. Environmental Health Perspectives, 2010, 118, 1370-1375.	6.0	77
34	Anatoxin-a producing Tychonema (Cyanobacteria) in European waterbodies. Water Research, 2015, 69, 68-79.	11.3	77
35	Morphological sex reversal upon short-term exposure to endocrine modulators in juvenile fathead minnow (Pimephales promelas). Toxicology Letters, 2002, 131, 51-63.	0.8	76
36	Effects of endocrine modulating substances on reproduction in the hermaphroditic snail Lymnaea stagnalis L. Aquatic Toxicology, 2001, 53, 103-114.	4.0	72

#	Article	IF	CITATIONS
37	Microcystin Congener– and Concentration-Dependent Induction of Murine Neuron Apoptosis and Neurite Degeneration. Toxicological Sciences, 2011, 124, 424-431.	3.1	72
38	Abundance and toxicity of Planktothrix rubescens in the pre-alpine Lake Ammersee, Germany. Harmful Algae, 2009, 8, 329-342.	4.8	71
39	L-BMAA Induced ER Stress and Enhanced Caspase 12 Cleavage in Human Neuroblastoma SH-SY5Y Cells at Low Nonexcitotoxic Concentrations. Toxicological Sciences, 2013, 131, 217-224.	3.1	71
40	Evaluation of spin labels for in-cell EPR by analysis of nitroxide reduction in cell extract of Xenopus laevis oocytes. Journal of Magnetic Resonance, 2011, 212, 450-454.	2.1	70
41	Determination of vitellogenin kinetics in male fathead minnows (Pimephales promelas). Toxicology Letters, 2002, 131, 65-74.	0.8	65
42	Contrasting cyanobacterial communities and microcystin concentrations in summers with extreme weather events: insights into potential effects of climate change. Hydrobiologia, 2017, 785, 71-89.	2.0	64
43	Toxicity of the cyanobacterial cyclic heptapeptide toxins microcystin-LR and -RR in early life-stages of the African clawed frog (Xenopus laevis). Aquatic Toxicology, 2000, 49, 189-198.	4.0	63
44	Analytical and Functional Characterization of Microcystins [Asp3]MC-RR and [Asp3,Dhb7]MC-RR:Â Consequences for Risk Assessment?. Environmental Science & Technology, 2007, 41, 2609-2616.	10.0	63
45	Diversity of toxin and non-toxin containing cyanobacterial mats of meltwater ponds on the Antarctic Peninsula: a pyrosequencing approach. Antarctic Science, 2014, 26, 521-532.	0.9	63
46	Site-directed spin-labeling of nucleotides and the use of in-cell EPR to determine long-range distances in a biologically relevant environment. Nature Protocols, 2013, 8, 131-147.	12.0	61
47	Effect of ozonation on the removal of cyanobacterial toxins during drinking water treatment Environmental Health Perspectives, 2002, 110, 1127-1132.	6.0	59
48	Canagliflozin mediated dual inhibition of mitochondrial glutamate dehydrogenase and complex I: an off-target adverse effect. Cell Death and Disease, 2018, 9, 226.	6.3	58
49	Longâ€Range Distance Determination in a DNA Model System inside <i>Xenopus laevis</i> Oocytes by Inâ€Cell Spinâ€Label EPR. ChemBioChem, 2011, 12, 1992-1995.	2.6	57
50	Species-, Sex-, and Cell Type-Specific Effects of Ochratoxin A and B. Toxicological Sciences, 2001, 63, 256-264.	3.1	56
51	Carcinogen-Specific Gene Expression Profiles in Short-term Treated Eker and Wild-type Rats Indicative of Pathways Involved in Renal Tumorigenesis. Cancer Research, 2007, 67, 4052-4068.	0.9	56
52	Ochratoxin A: Comparative pharmacokinetics and toxicological implications (experimental and) Tj ETQq0 0 0 rg	gBT Overlov 2.0	ck 10 Tf 50 1
53	Effects of treated sewage effluent on immune function in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 2004, 70, 345-355.	4.0	54

⁵⁴ High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney. DMM Disease Models and Mechanisms, 2012, 5, 627-35.

#	Article	IF	CITATIONS
55	Toxin mixture in cyanobacterial blooms – a critical comparison of reality with current procedures employed in human health risk assessment. , 2008, 619, 885-912.		52
56	Characterization of microcystin production in an Antarctic cyanobacterial mat community. Toxicon, 2006, 47, 271-278.	1.6	51
57	Pole-to-Pole Connections: Similarities between Arctic and Antarctic Microbiomes and Their Vulnerability to Environmental Change. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	51
58	Quantitative assessment of aerosolized cyanobacterial toxins at two New Zealand lakes. Journal of Environmental Monitoring, 2011, 13, 1617.	2.1	50
59	Recovery of MC-LR in fish liver tissue. Environmental Toxicology, 2005, 20, 449-458.	4.0	49
60	Potent toxins in Arctic environments – Presence of saxitoxins and an unusual microcystin variant in Arctic freshwater ecosystems. Chemico-Biological Interactions, 2013, 206, 423-431.	4.0	49
61	The human relevant potency threshold: Reducing uncertainty by human calibration of cumulative risk assessments. Regulatory Toxicology and Pharmacology, 2012, 62, 313-328.	2.7	48
62	Internationalization of read-across as a validated new approach method (NAM) for regulatory toxicology. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 579-606.	1.5	48
63	Increasing Microcystis cell density enhances microcystin synthesis: a mesocosm study. Inland Waters, 2012, 2, 17-22.	2.2	45
64	Scientifically unfounded precaution drives European Commission's recommendations on EDC regulation, while defying common sense, well-established science and risk assessment principles. Chemico-Biological Interactions, 2013, 205, A1-A5.	4.0	45
65	RPTEC/TERT1 cells form highly differentiated tubules when cultured in a 3D matrix. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 223-234.	1.5	44
66	Qualitative and Quantitative Histomorphologic Assessment of Fathead Minnow Pimephales promelas Gonads as an Endpoint for Evaluating Endocrine-Active Compounds: A Pilot Methodology Study. Toxicologic Pathology, 2004, 32, 600-612.	1.8	43
67	Hindsight rather than foresight: reality versus the EU draft guideline on pharmaceuticals in the environment. Trends in Biotechnology, 2004, 22, 326-330.	9.3	42
68	https://www.altex.org/index.php/altex/article/view/1339. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 682-699.	1.5	42
69	Aluminium toxicity to rainbow trout at low pH. Aquatic Toxicology, 1989, 15, 197-212.	4.0	41
70	Species- and sex-specific renal cytotoxicity of Ochratoxin A and B in vitro. Experimental and Toxicologic Pathology, 2001, 53, 215-225.	2.1	40
71	Histopathology and microcystin distribution in Lymnaea stagnalis (Gastropoda) following toxic cyanobacterial or dissolved microcystin-LR exposure. Aquatic Toxicology, 2010, 98, 211-220.	4.0	39
72	Intracellular Conformations of Human Telomeric Quadruplexes Studied by Electron Paramagnetic Resonance Spectroscopy. ChemPhysChem, 2012, 13, 1444-1447.	2.1	38

#	Article	IF	CITATIONS
73	Physiological stress and pathology in European whitefish (Coregonus lavaretus) induced by subchronic exposure to environmentally relevant densities of Planktothrix rubescens. Aquatic Toxicology, 2007, 82, 15-26.	4.0	35
74	Effects of Conventional Insecticides and Insect Growth Regulators on Fecundity and Other Life-Table Parameters of Micromus tasmaniae (Neuroptera: Hemerobiidae). Journal of Economic Entomology, 1998, 91, 34-40.	1.8	32
75	The role of α2u-globulin in ochratoxin A induced renal toxicity and tumors in F344 rats. Toxicology Letters, 1999, 104, 83-92.	0.8	32
76	Sex and low-level sampling stress modify the impacts of sewage effluent on the rainbow trout (Oncorhynchus mykiss) immune system. Aquatic Toxicology, 2005, 73, 79-90.	4.0	32
77	Toxicity of nitromusks in early lifestages of South African clawed frog (Xenopus laevis) and zebrafish (Danio rerio). Toxicology Letters, 1999, 111, 17-25.	0.8	31
78	Interactions of nitromusk parent compounds and their amino-metabolites with the estrogen receptors of rainbow trout (Oncorhynchus mykiss) and the South African clawed frog (Xenopus) Tj ETQq0 0 0 rg	gBT0/@verl	ock310 Tf 50 5
79	Toxic Cyanobacteria in Svalbard: Chemical Diversity of Microcystins Detected Using a Liquid Chromatography Mass Spectrometry Precursor Ion Screening Method. Toxins, 2018, 10, 147.	3.4	31
80	A roadmap for hazard monitoring and risk assessment of marine biotoxins on the basis of chemical and biological test systems. ALTEX: Alternatives To Animal Experimentation, 2013, 30, 487-545.	1.5	31
81	Principles of Pharmacology and Toxicology Also Govern Effects of Chemicals on the Endocrine System. Toxicological Sciences, 2015, 146, 11-15.	3.1	30
82	Zebrafish Oatp-mediated transport of microcystin congeners. Archives of Toxicology, 2016, 90, 1129-1139.	4.2	30
83	Adult fathead minnow, <i>Pimephales promelas</i> , partial life ycle reproductive and gonadal histopathology study with bisphenol A. Environmental Toxicology and Chemistry, 2012, 31, 2525-2535.	4.3	29
84	Investigation of the teratogenic potential of ochratoxin A and B using the FETAX system. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2005, 74, 417-423.	1.4	28
85	Production and specificity of mono and polyclonal antibodies against microcystins conjugated through N-methyldehydroalanine. Toxicon, 2001, 39, 477-483.	1.6	27
86	The cyanobacterial neurotoxin beta-N-methylamino-l-alanine (BMAA) induces neuronal and behavioral changes in honeybees. Toxicology and Applied Pharmacology, 2013, 270, 9-15.	2.8	26
87	Comparison of two ELISA-based methods for the detection of microcystins in blood serum. Chemico-Biological Interactions, 2014, 223, 10-17.	4.0	26
88	From bisphenol A to bisphenol F and a ban of mustard due to chronic low-dose exposures?. Archives of Toxicology, 2016, 90, 489-491.	4.2	25
89	Open letter to the European commission: scientifically unfounded precaution drives European commission's recommendations on EDC regulation, while defying common sense, well-established science, and risk assessment principles. Archives of Toxicology, 2013, 87, 1739-1741.	4.2	24
90	Trophic state and geographic gradients influence planktonic cyanobacterial diversity and distribution in New Zealand lakes. FEMS Microbiology Ecology, 2017, 93, fiw234.	2.7	24

#	Article	IF	CITATIONS
91	Adsorption of Ten Microcystin Congeners to Common Laboratory-Ware Is Solvent and Surface Dependent. Toxins, 2017, 9, 129.	3.4	24
92	Esterases in the zebra mussel Dreissena polymorpha: activities, inhibition, and binding to organophosphates. Aquatic Toxicology, 1997, 37, 295-305.	4.0	23
93	Distribution of intraperitoneally injected diclofenac in brown trout (Salmo trutta f. fario). Ecotoxicology and Environmental Safety, 2008, 71, 412-418.	6.0	23
94	New application for the identification and differentiation of microplastics based on fluorescence lifetime imaging microscopy (FLIM). Journal of Environmental Chemical Engineering, 2021, 9, 104769.	6.7	22
95	Determination of the filamentous cyanobacteria Planktothrix rubescens in environmental water samples using an image processing system. Harmful Algae, 2006, 5, 281-289.	4.8	21
96	The ChemScreen project to design a pragmatic alternative approach to predict reproductive toxicity of chemicals. Reproductive Toxicology, 2015, 55, 114-123.	2.9	21
97	Functional transepithelial transport measurements to detect nephrotoxicity in vitro using the RPTEC/TERT1 cell line. Archives of Toxicology, 2019, 93, 1965-1978.	4.2	21
98	Comparison of Aristolochic acid I derived DNA adduct levels in human renal toxicity models. Toxicology, 2019, 420, 29-38.	4.2	21
99	Production and characterization of monoclonal antibodies against ochratoxin B. Food and Chemical Toxicology, 2007, 45, 827-833.	3.6	20
100	Molecular cloning and functional characterization of a rainbow trout liver Oatp. Toxicology and Applied Pharmacology, 2014, 280, 534-542.	2.8	20
101	Pitfalls in microcystin extraction and recovery from human blood serum. Chemico-Biological Interactions, 2014, 223, 87-94.	4.0	20
102	Human cost burden of exposure to endocrine disrupting chemicals. A critical review. Archives of Toxicology, 2017, 91, 2745-2762.	4.2	20
103	Label-free identification and differentiation of different microplastics using phasor analysis of fluorescence lifetime imaging microscopy (FLIM)-generated data. Chemico-Biological Interactions, 2021, 342, 109466.	4.0	20
104	Species- and sex-specific variations in binding of ochratoxin A by renal proteins in vitro. Experimental and Toxicologic Pathology, 2002, 54, 151-159.	2.1	19
105	Molecular Characterization of Preneoplastic Lesions Provides Insight on the Development of Renal Tumors. American Journal of Pathology, 2009, 175, 1686-1698.	3.8	19
106	Scientifically unfounded precaution drives European Commission's recommendations on EDC regulation, while defying common sense, well-established science and risk assessment principles. Toxicology in Vitro, 2013, 27, 2110-2114.	2.4	18
107	Establishment of a protocol for the gene expression analysis of laser microdissected rat kidney samples with affymetrix genechips. Toxicology and Applied Pharmacology, 2006, 217, 134-142.	2.8	17
108	Simultaneous Detection of 14 Microcystin Congeners from Tissue Samples Using UPLC- ESI-MS/MS and Two Different Deuterated Synthetic Microcystins as Internal Standards. Toxins, 2019, 11, 388.	3.4	17

#	Article	IF	CITATIONS
109	Influence of Chronic Exposure to Treated Sewage Effluent on the Distribution of White Blood Cell Populations in Rainbow Trout (Oncorhynchus mykiss) Spleen. Toxicological Sciences, 2004, 82, 97-105.	3.1	15
110	Experimental models of microcystin accumulation in Daphnia magna grazing on Planktothrix rubescens: Implications for water management. Aquatic Toxicology, 2014, 148, 9-15.	4.0	15
111	Courage for simplification and imperfection in the 21st century assessment of "Endocrine disruption― ALTEX: Alternatives To Animal Experimentation, 2010, 27, 264-273.	1.5	15
112	Species-specific toxicity of aristolochic acid (AA) in vitro. Toxicology in Vitro, 2008, 22, 1213-1221.	2.4	14
113	Primary porcine proximal tubular cells as an alternative to human primary renal cells in vitro: an initial characterization. BMC Cell Biology, 2013, 14, 55.	3.0	14
114	Is a Central Sediment Sample Sufficient? Exploring Spatial and Temporal Microbial Diversity in a Small Lake. Toxins, 2020, 12, 580.	3.4	14
115	STIMULATION OF REPRODUCTIVE GROWTH IN RAINBOW TROUT (ONCORHYNCHUS MYKISS) FOLLOWING EXPOSURE TO TREATED SEWAGE EFFLUENT. Environmental Toxicology and Chemistry, 2006, 25, 2753.	4.3	13
116	Development and Characterization of a Monoclonal Antibody against Ochratoxin B and Its Application in ELISA. Toxins, 2010, 2, 1582-1594.	3.4	13
117	Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management. Sustainability, 2021, 13, 4498.	3.2	13
118	Bioavailability and potential carcinogenicity of polycyclic aromatic hydrocarbons from wood combustion particulate matter in vitro. Chemico-Biological Interactions, 2013, 206, 411-422.	4.0	12
119	Intracellular, environmental and biotic interactions influence recruitment of benthicMicrocystis(Cyanophyceae) in a shallow eutrophic lake. Journal of Plankton Research, 2016, 38, 1289-1301.	1.8	11
120	Allowing pseudoscience into EU risk assessment processes is eroding public trust in science experts and in science as a whole: The bigger picture. Chemico-Biological Interactions, 2016, 257, 1-3.	4.0	11
121	Total Synthesis of Microcystin-LF and Derivatives Thereof. Journal of Organic Chemistry, 2017, 82, 3680-3691.	3.2	11
122	Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity: how to evaluate the risk of the S-EDCs?. Archives of Toxicology, 2020, 94, 2549-2557.	4.2	11
123	Characterization of biologically available wood combustion particles in cell culture medium. ALTEX: Alternatives To Animal Experimentation, 2012, 29, 183-200.	1.5	11
124	Propiverine-induced accumulation of nuclear and cytosolic protein in F344 rat kidneys: Isolation and identification of the accumulating protein. Toxicology and Applied Pharmacology, 2008, 233, 411-419.	2.8	10
125	The Effect of Cyanobacterial Biomass Enrichment by Centrifugation and GF/C Filtration on Subsequent Microcystin Measurement. Toxins, 2015, 7, 821-834.	3.4	10
126	Effects of repeated ochratoxin exposure on renal cells in vitro. Toxicology in Vitro, 2007, 21, 72-80.	2.4	9

#	Article	IF	CITATIONS
127	Editorial. Regulatory Toxicology and Pharmacology, 2013, 67, 317-320.	2.7	9
128	Whither the impending european regulation of presumed endocrine disruptors?. Regulatory Toxicology and Pharmacology, 2016, 82, A1-A2.	2.7	9
129	Novel insights into renal d-amino acid oxidase accumulation: propiverine changes DAAO localization and peroxisomal size in vivo. Archives of Toxicology, 2017, 91, 427-437.	4.2	9
130	Is Toxin-Producing Planktothrix sp. an Emerging Species in Lake Constance?. Toxins, 2021, 13, 666.	3.4	9
131	Effects of BPA in Snails. Environmental Health Perspectives, 2006, 114, A340-1; author reply A341-2.	6.0	8
132	The Scent of Blood: A Driver of Human Behavior?. PLoS ONE, 2015, 10, e0137777.	2.5	8
133	Don't mar legislation with pseudoscience. Nature, 2016, 535, 355-355.	27.8	8
134	Time-matched analysis of DNA adduct formation and early gene expression as predictive tool for renal carcinogenesis in methylazoxymethanol acetate treated Eker rats. Archives of Toxicology, 2017, 91, 3427-3438.	4.2	8
135	Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2020, 83, 485-494.	2.3	8
136	Response to "The Path Forward on Endocrine Disruptors Requires Focusâ€: Toxicological Sciences, 2016, 149, 273-4.	3.1	8
137	Can toxin warfare against fungal parasitism influence short-term Dolichospermum bloom dynamics? – A field observation. Harmful Algae, 2020, 99, 101915.	4.8	7
138	Variability in microcystin quotas during a Microcystis bloom in a eutrophic lake. PLoS ONE, 2021, 16, e0254967.	2.5	7
139	The EU chemicals strategy for sustainability: in support of the BfR position. Archives of Toxicology, 2021, 95, 3133-3136.	4.2	7
140	Editorial. Food and Chemical Toxicology, 2013, 62, A1-A4.	3.6	6
141	A comparison of bacterial community structure, activity and microcystins associated with formation and breakdown of a cyanobacterial scum. Aquatic Microbial Ecology, 2017, 80, 243-256.	1.8	6
142	Scientifically unfounded precaution drives European Commission's recommendations on EDC regulation, while defying common sense, well-established science and risk assessment principles. Toxicon, 2013, 76, A1-A2.	1.6	5
143	Understanding renal nuclear protein accumulation: an in vitro approach to explain an in vivo phenomenon. Archives of Toxicology, 2017, 91, 3599-3611.	4.2	5
144	Human MRP2 exports MC-LR but not the glutathione conjugate. Chemico-Biological Interactions, 2019, 311, 108761.	4.0	5

#	Article	IF	CITATIONS
145	Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?. Chemico-Biological Interactions, 2020, 326, 109099.	4.0	5
146	Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?. Toxicology in Vitro, 2020, 67, 104861.	2.4	5
147	Investigation of microcystin conformation and binding towards PPP1 by molecular dynamics simulation. Chemico-Biological Interactions, 2022, 351, 109766.	4.0	5
148	5. Potential effects of climate change on cyanobacterial toxin production. , 2015, , 155-180.		4
149	Conflict of interest statements: current dilemma and a possible way forward. Archives of Toxicology, 2016, 90, 2293-2295.	4.2	4
150	Science and politics: From science to decision making. Regulatory Toxicology and Pharmacology, 2006, 44, 1-3.	2.7	3
151	Physiological oxygen and co-culture with human fibroblasts facilitate in vivo-like properties in human renal proximal tubular epithelial cells. Chemico-Biological Interactions, 2022, , 109959.	4.0	3
152	Toxicology and Risk Assessment of Pharmaceuticals. , 2006, , 287-309.		2
153	Preneoplastic lesions in kidney and carcinogenesis by non-genotoxic compounds. Toxicology Letters, 1994, 74, 19.	0.8	1
154	Further thoughts on limitations, uncertainties and competing interpretations regarding chemical exposures and diabetes. Journal of Epidemiology and Community Health, 2017, 71, 943-943.	3.7	1
155	Identification of d -amino acid oxidase and propiverine interaction partners and their potential role in the propiverine-mediated nephropathy. Chemico-Biological Interactions, 2018, 281, 69-80.	4.0	1
156	Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?. Toxicology Letters, 2020, 331, 259-264.	0.8	1
157	Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?. Environmental Toxicology and Pharmacology, 2020, 78, 103396.	4.0	1
158	Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?. Food and Chemical Toxicology, 2020, 142, 111349.	3.6	1
159	Application of Laser-Capture Microdissection to Study Renal Carcinogenesis. Methods in Molecular Biology, 2011, 755, 279-290.	0.9	Ο
160	Editorial (for "The billboardâ€) . Chemico-Biological Interactions, 2013, 206, A1.	4.0	0
161	Open letter: draft regulation on endocrine-active chemicals. Archives of Toxicology, 2013, 87, 1869-1872.	4.2	0
162	Limitations, uncertainties and competing interpretations regarding chemical exposures and diabetes. Journal of Epidemiology and Community Health, 2017, 71, 941-941.	3.7	0

#	Article	IF	CITATIONS
163	Critique of the "Comment―etitled "Pyrethroid exposure: Not so harmless after all―by Demeneix et al. (2020) published in the lancet diabetes endocrinology. Toxicology Letters, 2021, 340, 1-3.	0.8	0