List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7379943/publications.pdf Version: 2024-02-01

		38742	39675
226	10,351	50	94
papers	citations	h-index	g-index
233	233	233	8318
all docs	docs citations	times ranked	citing authors

IAMES P FDIEND

#	Article	IF	CITATIONS
1	Ultrasound Mediated Cellular Deflection Results in Cellular Depolarization. Advanced Science, 2022, 9, e2101950.	11.2	16
2	Sonogenetic control of mammalian cells using exogenous Transient Receptor Potential A1 channels. Nature Communications, 2022, 13, 600.	12.8	53
3	Microscale Concert Hall Acoustics to Produce Uniform Ultrasound Stimulation for Targeted Sonogenetics in hsTRPA1â€Transfected Cells. Advanced NanoBiomed Research, 2022, 2, .	3.6	6
4	Robotics and Artificial Intelligence in Endovascular Neurosurgery. Cureus, 2022, 14, e23662.	0.5	7
5	Acoustofluidics for biomedical applications. Nature Reviews Methods Primers, 2022, 2, .	21.2	95
6	Two pathways are required for ultrasound-evoked behavioral changes in Caenorhabditis elegans. PLoS ONE, 2022, 17, e0267698.	2.5	9
7	Well-free agglomeration and on-demand three-dimensional cell cluster formation using guided surface acoustic waves through a couplant layer. Biomedical Microdevices, 2022, 24, .	2.8	4
8	Nebulization of siRNA for inhalation therapy based on a microfluidic surface acoustic wave platform. Ultrasonics Sonochemistry, 2022, 88, 106088.	8.2	9
9	Facile Analytical Extraction of the Hyperelastic Constants for the Two-Parameter Mooney–Rivlin Model from Experiments on Soft Polymers. Soft Robotics, 2021, 8, 365-370.	8.0	19
10	Focused surface acoustic wave locally removes cells from culture surface. Lab on A Chip, 2021, 21, 1299-1306.	6.0	22
11	Practical microcircuits for handheld acoustofluidics. Lab on A Chip, 2021, 21, 1352-1363.	6.0	20
12	Microliter ultrafast centrifuge platform for size-based particle and cell separation and extraction using novel omnidirectional spiral surface acoustic waves. Lab on A Chip, 2021, 21, 904-915.	6.0	33
13	Vacuum exhausted isolation locker (VEIL) to reduce inpatient droplet/aerosol transmission during COVID-19 pandemic. Infection Control and Hospital Epidemiology, 2021, , 1-10.	1.8	4
14	Design and Fabrication of Negative-Refractive-Index Metamaterial Unit Cells for Near-Megahertz Enhanced Acoustic Transmission in Biomedical Ultrasound Applications. Physical Review Applied, 2021, 15, .	3.8	18
15	Generating waist area-dependent ground reaction forces for long-duration spaceflight. Journal of Biomechanics, 2021, 118, 110272.	2.1	0
16	Powerful Acoustogeometric Streaming from Dynamic Geometric Nonlinearity. Physical Review Letters, 2021, 126, 164502.	7.8	13
17	Manipulation and Mixing of 200 Femtoliter Droplets in Nanofluidic Channels Using MHzâ€Order Surface Acoustic Waves. Advanced Science, 2021, 8, 2100408.	11.2	19
18	Soft robotic steerable microcatheter for the endovascular treatment of cerebral disorders. Science Robotics, 2021, 6, .	17.6	47

#	Article	IF	CITATIONS
19	Unapodization: a method to produce laterally uniform surface acoustic waves for acoustofluidics. Journal of Micromechanics and Microengineering, 2021, 31, 104001.	2.6	5
20	An investigation of maximum particle velocity as a universal invariant—Defined by a statistical measure of failure or plastic energy loss for acoustofluidic applications. Journal of the Acoustical Society of America, 2021, 150, 878-890.	1.1	2
21	Investigation of long term drift of an intraocular pressure sensor. Microsystem Technologies, 2021, 27, 2473-2479.	2.0	0
22	Introduction to the special issue on the theory and applications of acoustofluidics. Journal of the Acoustical Society of America, 2021, 150, 4558-4560.	1.1	2
23	A review: controlling the propagation of surface acoustic waves via waveguides for potential use in acoustofluidics. Mechanical Engineering Reviews, 2020, 7, 19-00402-19-00402.	4.7	11
24	Droplet Ejection at Controlled Angles via Acoustofluidic Jetting. Physical Review Letters, 2020, 125, 184504.	7.8	19
25	Optimized, Omnidirectional Surface Acoustic Wave Source: 152° <i>Y</i> -Rotated Cut of Lithium Niobate for Acoustofluidics. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2176-2186.	3.0	12
26	Fabrication of Surface Acoustic Wave Devices on Lithium Niobate. Journal of Visualized Experiments, 2020, , .	0.3	11
27	MADVent: A lowâ€cost ventilator for patients with COVIDâ€19. Medical Devices & Sensors, 2020, 3, e10106.	2.7	38
28	Single ventilator for multiple patients during COVID19 surge: matching and balancing patients. Critical Care, 2020, 24, 357.	5.8	9
29	The Vibration Behavior of Subâ€Micrometer Gas Vesicles in Response to Acoustic Excitation Determined via Laser Doppler Vibrometry. Advanced Functional Materials, 2020, 30, 2000239.	14.9	15
30	Pulsed Low-Frequency Magnetic Fields Induce Tumor Membrane Disruption and Altered Cell Viability. Biophysical Journal, 2020, 118, 1552-1563.	0.5	26
31	Fabrication of Nanoheight Channels Incorporating Surface Acoustic Wave Actuation via Lithium Niobate for Acoustic Nanofluidics. Journal of Visualized Experiments, 2020, , .	0.3	4
32	Enabling Rapid Charging Lithium Metal Batteries via Surface Acoustic Waveâ€Driven Electrolyte Flow. Advanced Materials, 2020, 32, e1907516.	21.0	35
33	Rapid and Accurate Pressure Sensing Device for Direct Measurement of Intraocular Pressure. Translational Vision Science and Technology, 2020, 9, 28.	2.2	9
34	Lithiumâ€Metal Batteries: Enabling Rapid Charging Lithium Metal Batteries via Surface Acoustic Waveâ€Đriven Electrolyte Flow (Adv. Mater. 14/2020). Advanced Materials, 2020, 32, 2070108.	21.0	0
35	MHz-Order Surface Acoustic Wave Thruster for Underwater Silent Propulsion. Micromachines, 2020, 11, 419.	2.9	4
36	Novel Coronavirus Disease 2019 (COVID-19) Aerosolization Box: Design Modifications for Patient Safety. Journal of Cardiothoracic and Vascular Anesthesia, 2020, 34, 2274-2276.	1.3	5

#	Article	IF	CITATIONS
37	Medical Devices for Low- and Middle-Income Countries: A Review and Directions for Development. Journal of Medical Devices, Transactions of the ASME, 2020, 14, 010803.	0.7	13
38	Fabrication and Characterization of Thickness Mode Piezoelectric Devices for Atomization and Acoustofluidics. Journal of Visualized Experiments, 2020, , .	0.3	2
39	Frequency and damping effect of suspended silicon nitride membranes in water near the megahertz range. Journal of Micromechanics and Microengineering, 2020, 30, 125006.	2.6	1
40	Enzyme-free release of adhered cells from standard culture dishes using intermittent ultrasonic traveling waves. Communications Biology, 2019, 2, 393.	4.4	49
41	Inducing Mild Traumatic Brain Injury in C. elegans via Cavitation-Free Surface Acoustic Wave-Driven Ultrasonic Irradiation. Scientific Reports, 2019, 9, 12775.	3.3	20
42	Improving and Predicting Fluid Atomization via Hysteresisâ€Free Thickness Vibration of Lithium Niobate. Advanced Functional Materials, 2018, 28, 1704359.	14.9	22
43	Decontaminating surfaces with atomized disinfectants generated by a novel thickness-mode lithium niobate device. Applied Microbiology and Biotechnology, 2018, 102, 6459-6467.	3.6	8
44	Driving useful morphological changes in magnetic nanoparticle structures through the application of acoustic waves and magnetic fields. Applied Physics Letters, 2018, 113, 034103.	3.3	6
45	Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications. Lab on A Chip, 2018, 18, 1952-1996.	6.0	198
46	Cell agglomeration in the wells of a 24-well plate using acoustic streaming. Lab on A Chip, 2017, 17, 876-886.	6.0	58
47	Notice of Removal: Prevent lithium dendrite formation in rechargeable batteries through surface acoustic waves. , 2017, , .		0
48	Acoustically enhanced heat transport. Review of Scientific Instruments, 2016, 87, 014902.	1.3	12
49	Efficient subculture process for adherent cells by selective collection using cultivation substrate vibration. IEEE Transactions on Biomedical Engineering, 2016, 64, 1-1.	4.2	12
50	A Local Nanofiber-Optic Ear. ACS Photonics, 2016, 3, 1762-1767.	6.6	10
51	Acoustic Nanofluidics via Roomâ€Temperature Lithium Niobate Bonding: A Platform for Actuation and Manipulation of Nanoconfined Fluids and Particles. Advanced Functional Materials, 2016, 26, 7861-7872.	14.9	49
52	Enhanced Ion Current Rectification in 2D Grapheneâ€Based Nanofluidic Devices. Advanced Science, 2015, 2, 1500062.	11.2	28
53	Dynamics of liquid films exposed to high-frequency surface vibration. Physical Review E, 2015, 91, 053015.	2.1	41
54	Planar microfluidic drop splitting and merging. Lab on A Chip, 2015, 15, 1942-1951.	6.0	54

#	Article	IF	CITATIONS
55	Plasmon Resonances of Highly Doped Two-Dimensional MoS ₂ . Nano Letters, 2015, 15, 883-890.	9.1	167
56	Mixed mode of dissolving immersed nanodroplets at a solid–water interface. Soft Matter, 2015, 11, 1889-1900.	2.7	65
57	Note: Improved calibration of atomic force microscope cantilevers using multiple reference cantilevers. Review of Scientific Instruments, 2015, 86, 056106.	1.3	6
58	Acoustic–Excitonic Coupling for Dynamic Photoluminescence Manipulation of Quasi <i>â€</i> 2D MoS ₂ Nanoflakes. Advanced Optical Materials, 2015, 3, 888-894.	7.3	39
59	Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform. Biomicrofluidics, 2015, 9, 052603.	2.4	63
60	Nanofabrication of highly ordered, tunable metallic mesostructures via quasi-hard-templating of lyotropic liquid crystals. Scientific Reports, 2015, 4, 7420.	3.3	10
61	Motility induced changes in viscosity of suspensions of swimming microbes in extensional flows. Soft Matter, 2015, 11, 4658-4668.	2.7	26
62	Extensional viscosity of copper nanowire suspensions in an aqueous polymer solution. Soft Matter, 2015, 11, 8076-8082.	2.7	12
63	Vibrationâ€Induced Deagglomeration and Shearâ€Induced Alignment of Carbon Nanotubes in Air. Advanced Functional Materials, 2015, 25, 1014-1023.	14.9	30
64	Microscale anechoic architecture: acoustic diffusers for ultra low power microparticle separation via traveling surface acoustic waves. Lab on A Chip, 2015, 15, 43-46.	6.0	41
65	Nozzleless spray cooling using surface acoustic waves. Journal of Aerosol Science, 2015, 79, 48-60.	3.8	39
66	Note: Calibration of atomic force microscope cantilevers using only their resonant frequency and quality factor. Review of Scientific Instruments, 2014, 85, 116101.	1.3	20
67	Ultraviolet laser induced domain inversion on chromium coated lithium niobate crystals. Optical Materials Express, 2014, 4, 241.	3.0	9
68	Monolithic Phononic Crystals with a Surface Acoustic Band Gap from Surface Phonon-Polariton Coupling. Physical Review Letters, 2014, 113, 215503.	7.8	41
69	Surface Acoustic Devices: UV Direct Write Metal Enhanced Redox (MER) Domain Engineering for Realization of Surface Acoustic Devices on Lithium Niobate (Adv. Mater. Interfaces 4/2014). Advanced Materials Interfaces, 2014, 1, .	3.7	0
70	Double flow reversal in thin liquid films driven by megahertz-order surface vibration. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20130765.	2.1	35
71	Hydroxypropyl Cellulose Methacrylate as a Photoâ€Patternable and Biodegradable Hybrid Paper Substrate for Cell Culture and Other Bioapplications. Advanced Healthcare Materials, 2014, 3, 543-554.	7.6	25
72	Self-assembled highly crystalline TiO2 mesostructures for sunlight-driven, pH-responsive photodegradation of dyes. Materials Research Bulletin, 2014, 55, 13-18.	5.2	15

#	Article	IF	CITATIONS
73	Controlled morphogenesis and self-assembly of bismutite nanocrystals into three-dimensional nanostructures and their applications. Journal of Materials Chemistry A, 2014, 2, 2275-2282.	10.3	14
74	In Situ Generation of Tunable Porosity Gradients in Hydrogelâ€Based Scaffolds for Microfluidic Cell Culture. Advanced Healthcare Materials, 2014, 3, 1655-1670.	7.6	21
75	Surface Acoustic Wave Microfluidics. Annual Review of Fluid Mechanics, 2014, 46, 379-406.	25.0	456
76	Continuous flow actuation between external reservoirs in small-scale devices driven by surface acoustic waves. Lab on A Chip, 2014, 14, 750-758.	6.0	62
77	Toward Complete Miniaturisation of Flow Injection Analysis Systems: Microfluidic Enhancement of Chemiluminescent Detection. Analytical Chemistry, 2014, 86, 10812-10819.	6.5	41
78	UV/ozone-assisted low temperature preparation of mesoporous TiO ₂ with tunable phase composition and enhanced solar light photocatalytic activity. Journal of Materials Chemistry A, 2014, 2, 18791-18795.	10.3	11
79	Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation. Lab on A Chip, 2014, 14, 1858-1865.	6.0	57
80	Simple, low cost MHz-order acoustomicrofluidics using aluminium foil electrodes. Lab on A Chip, 2014, 14, 1802-1805.	6.0	35
81	RF-Activated Standing Surface Acoustic Wave for On-Chip Particle Manipulation. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 1898-1904.	4.6	21
82	Frequency effects on the scale and behavior of acoustic streaming. Physical Review E, 2014, 89, 013203.	2.1	130
83	Poloidal Flow and Toroidal Particle Ring Formation in a Sessile Drop Driven by Megahertz Order Vibration. Langmuir, 2014, 30, 11243-11247.	3.5	33
84	UV Direct Write Metal Enhanced Redox (MER) Domain Engineering for Realization of Surface Acoustic Devices on Lithium Niobate. Advanced Materials Interfaces, 2014, 1, 1400006.	3.7	8
85	Uncertainty in least-squares fits to the thermal noise spectra of nanomechanical resonators with applications to the atomic force microscope. Review of Scientific Instruments, 2014, 85, 025104.	1.3	18
86	Effective pulmonary delivery of an aerosolized plasmid DNA vaccine via surface acoustic wave nebulization. Respiratory Research, 2014, 15, 60.	3.6	81
87	Graphene-Based Planar Nanofluidic Rectifiers. Journal of Physical Chemistry C, 2014, 118, 21856-21865.	3.1	24
88	An emerging reactor technology for chemical synthesis: Surface acoustic wave-assisted closed-vessel Suzuki coupling reactions. Ultrasonics Sonochemistry, 2014, 21, 1305-1309.	8.2	13
89	Electrochemical Control of Photoluminescence in Two-Dimensional MoS ₂ Nanoflakes. ACS Nano, 2013, 7, 10083-10093.	14.6	282
90	Precise drop dispensation on superhydrophobic surfaces using acoustic nebulization. Soft Matter, 2013, 9, 3631.	2.7	18

#	Article	IF	CITATIONS
91	Impact of domain depth on SAW generation by acoustic superlattice transducer in 128° YX-cut lithium niobate. , 2013, , .		0
92	Fast Surface Acoustic Wave-Matrix-Assisted Laser Desorption Ionization Mass Spectrometry of Cell Response from Islets of Langerhans. Analytical Chemistry, 2013, 85, 2623-2629.	6.5	16
93	Microscale Capillary Wave Turbulence Excited by High Frequency Vibration. Langmuir, 2013, 29, 3835-3845.	3.5	58
94	Polariton-based band gap and generation of surface acoustic waves in acoustic superlattice lithium niobate. Journal of Applied Physics, 2013, 114, 054904.	2.5	14
95	Surface acoustic streaming in microfluidic system for rapid multicellular tumor spheroids generation. Proceedings of SPIE, 2013, , .	0.8	1
96	A waveguide based microfluidic application. , 2013, , .		0
97	Ultraviolet direct domain writing on 128° YX-cut LiNbO <inf>3</inf> : For SAW applications. , 2013, , .		0
98	AFM, Tapping Mode. , 2012, , 99-99.		2
99	The appearance of boundary layers and drift flows due to high-frequency surface waves. Journal of Fluid Mechanics, 2012, 707, 482-495.	3.4	34
100	Surface acoustic wave solid-state rotational micromotor. Applied Physics Letters, 2012, 100, .	3.3	14
101	Multi-degree-of-freedom ultrasonic micromotor for guidewire and catheter navigation: The NeuroGlide actuator. Applied Physics Letters, 2012, 100, .	3.3	17
102	Atomization off thin water films generated by high-frequency substrate wave vibrations. Physical Review E, 2012, 86, 056312.	2.1	113
103	Fluid-structure interaction in deformable microchannels. Physics of Fluids, 2012, 24, .	4.0	53
104	Focused ion beam milling of microchannels in lithium niobate. Biomicrofluidics, 2012, 6, 012819.	2.4	13
105	UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration. Lab on A Chip, 2012, 12, 2970.	6.0	66
106	Spring constant calibration of atomic force microscope cantilevers of arbitrary shape. Review of Scientific Instruments, 2012, 83, 103705.	1.3	228
107	Unique fingering instabilities and soliton-like wave propagation in thin acoustowetting films. Nature Communications, 2012, 3, 1167.	12.8	86
			Ē

#	Article	IF	CITATIONS
109	AFM. , 2012, , 83-83.		Ο
110	Uniform mixing in paper-based microfluidic systems using surface acoustic waves. Lab on A Chip, 2012, 12, 773-779.	6.0	153
111	AC Electroosmosis: Basics and Lab-on-a-Chip Applications. , 2012, , 25-30.		1
112	Miniaturized Labâ€onâ€aâ€Ðisc (miniLOAD). Small, 2012, 8, 1881-1888.	10.0	46
113	Lab-on-a-Disc: Miniaturized Lab-on-a-Disc (miniLOAD) (Small 12/2012). Small, 2012, 8, 1880-1880.	10.0	1
114	A miniaturized surface acoustic wave atomizer with a disposable pump-free liquid supply system for continuous atomization. , 2011, , .		5
115	Template-free Synthesis and Encapsulation Technique for Layer-by-Layer Polymer Nanocarrier Fabrication. ACS Nano, 2011, 5, 9583-9591.	14.6	76
116	ZnO/sapphire based layered surface acoustic wave devices for microfluidic applications. , 2011, , .		3
117	Substrate dependent drop deformation and wetting under high frequency vibration. Soft Matter, 2011, 7, 7976.	2.7	35
118	Arbitrary axis rotating surface acoustic wave micro motor. , 2011, , .		3
119	Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting. New Journal of Physics, 2011, 13, 023005.	2.9	34
120	Organosilane deposition for microfluidic applications. Biomicrofluidics, 2011, 5, 36501-365017.	2.4	84
121	Paper-Based Microfluidic Surface Acoustic Wave Sample Delivery and Ionization Source for Rapid and Sensitive Ambient Mass Spectrometry. Analytical Chemistry, 2011, 83, 3260-3266.	6.5	113
122	Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics. Reviews of Modern Physics, 2011, 83, 647-704.	45.6	742
123	ADMiER-ing thin but complex fluids. , 2011, , .		0
124	On-chip surface acoustic-wave driven microfluidic motors. Proceedings of SPIE, 2011, , .	0.8	2
125	Microfluidic chip containing porous gradient for chemotaxis study. , 2011, , .		2
126	Quantification of surface acoustic wave induced chaotic mixing-flows in microfluidic wells. Sensors and Actuators B: Chemical, 2011, 160, 1565-1572.	7.8	81

#	Article	IF	CITATIONS
127	Microfluidic Devices for Bioapplications. Small, 2011, 7, 12-48.	10.0	455
128	Rotational microfluidic motor for on-chip microcentrifugation. Applied Physics Letters, 2011, 98, .	3.3	31
129	Surface acoustic wave micromotor with arbitrary axis rotational capability. Applied Physics Letters, 2011, 99, .	3.3	10
130	Evaporative self-assembly of gold nanorings via a surface acoustic wave atomization. Proceedings of SPIE, 2011, , .	0.8	2
131	10.1063/1.3600775.1., 2011, , .		2
132	10.1063/1.3662931.1.,2011,,.		1
133	Particle concentration via acoustically driven microcentrifugation: microPIV flow visualization and numerical modelling studies. Microfluidics and Nanofluidics, 2010, 8, 73-84.	2.2	76
134	MicroPIV and micromixing study of corona wind induced microcentrifugation flows in a cylindrical cavity. Microfluidics and Nanofluidics, 2010, 8, 231-241.	2.2	6
135	Numerical modeling of electro-conjugate fluid flows. Sensors and Actuators A: Physical, 2010, 161, 152-157.	4.1	23
136	Viscoelastic flow in a two-dimensional collapsible channel. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 1204-1218.	2.4	15
137	Aluminium coating of lead zirconate titanate—A study of cold spray variables. Surface and Coatings Technology, 2010, 205, 2016-2022.	4.8	24
138	A brief review of actuation at the micro-scale using electrostatics, electromagnetics and piezoelectric ultrasonics. Acoustical Science and Technology, 2010, 31, 115-123.	0.5	69
139	Capillary wave motion excited by high frequency surface acoustic waves. Physics of Fluids, 2010, 22, .	4.0	66
140	Using laser Doppler vibrometry to measure capillary surface waves on fluid-fluid interfaces. Biomicrofluidics, 2010, 4, .	2.4	10
141	Modelling and testing of a piezoelectric ultrasonic micro-motor suitable for <i>in vivo</i> micro-robotic applications. Journal of Micromechanics and Microengineering, 2010, 20, 115018.	2.6	18
142	Unique flow transitions and particle collection switching phenomena in a microchannel induced by surface acoustic waves. Applied Physics Letters, 2010, 97, 234106.	3.3	23
143	A study on axial and torsional resonant mode matching for a mechanical system with complex nonlinear geometries. Review of Scientific Instruments, 2010, 81, 063901.	1.3	3
144	Ultrasonic nebulization platforms for pulmonary drug delivery. Expert Opinion on Drug Delivery, 2010, 7, 663-679.	5.0	106

#	Article	IF	CITATIONS
145	Announcement: Fabrication and Laboratory Methods Section. Biomicrofluidics, 2010, 4, 020201.	2.4	0
146	Fast Inertial Microfluidic Actuation and Manipulation Using Surface Acoustic Waves. , 2010, , .		0
147	Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics, 2010, 4, .	2.4	308
148	The extraction of liquid, protein molecules and yeast cells from paper through surface acoustic wave atomization. Lab on A Chip, 2010, 10, 470-476.	6.0	87
149	A piezoelectric ultrasonic linear micromotor using a slotted stator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 1868-1874.	3.0	42
150	Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet. Lab on A Chip, 2010, 10, 2979.	6.0	110
151	Rapid microscale in-gel processing and digestion of proteins using surface acoustic waves. Lab on A Chip, 2010, 10, 1518.	6.0	24
152	Interfacial Jetting Phenomena Induced by Focused Surface Vibrations. Physical Review Letters, 2009, 103, 024501.	7.8	173
153	Micromotor of Less Than 1 mm^3 Volume for In Vivo Medical Procedures. , 2009, , .		8
154	Rotating bouncing disks, tossing pizza dough, and the behavior of ultrasonic motors. Physical Review E, 2009, 80, 046201.	2.1	7
155	Effect of surface acoustic waves on the viability, proliferation and differentiation of primary osteoblast-like cells. Biomicrofluidics, 2009, 3, 034102.	2.4	64
156	Transmitting high power rf acoustic radiation via fluid couplants into superstrates for microfluidics. Applied Physics Letters, 2009, 94, .	3.3	84
157	Rapid production of protein-loaded biodegradable microparticles using surface acoustic waves. Biomicrofluidics, 2009, 3, 014102.	2.4	48
158	Unraveling interfacial jetting phenomena induced by focused surface acoustic waves. , 2009, , .		2
159	Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves. Applied Physics Letters, 2009, 95, 134101.	3.3	26
160	Inducing rapid fluid flows in microchannels with surface acoustic waves. , 2009, , .		2
161	Nanoparticle patterning in a microfluidic drop induced by surface acoustic waves. , 2009, , .		1

#	Article	IF	CITATIONS
163	Piezoelectric ultrasonic resonant motor with stator diameter less than 250 µm: the <i>Proteus</i> motor. Journal of Micromechanics and Microengineering, 2009, 19, 022001.	2.6	63
164	The dynamics of surface acoustic waveâ€driven scaffold cell seeding. Biotechnology and Bioengineering, 2009, 103, 387-401.	3.3	29
165	Electrokinetic actuation of low conductivity dielectric liquids. Sensors and Actuators B: Chemical, 2009, 140, 287-294.	7.8	49
166	The axial–torsional vibration of pretwisted beams. Journal of Sound and Vibration, 2009, 321, 115-136.	3.9	33
167	Piezoelectric ultrasonic micro/milli-scale actuators. Sensors and Actuators A: Physical, 2009, 152, 219-233.	4.1	195
168	Piezoelectric ultrasonic resonant micromotor with a volume of less than 1 mm ³ for use in medical microbots. , 2009, , .		11
169	Triple Degree-of-Freedom Piezoelectric Ultrasonic Micromotor via Flexural-Axial. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 1716-1724.	3.0	35
170	Rapid fluid flow and mixing induced in microchannels using surface acoustic waves. Europhysics Letters, 2009, 87, 47003.	2.0	99
171	Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics, 2009, 3, 012002.	2.4	330
172	Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization. Lab on A Chip, 2009, 9, 2184.	6.0	151
173	Surface acoustic waves as an energy source for drop scale synthetic chemistry. Lab on A Chip, 2009, 9, 754.	6.0	46
174	The behavior of bouncing disks and pizza tossing. Europhysics Letters, 2009, 85, 60002.	2.0	3
175	Surface Acoustic Waves: A New Paradigm for Driving Ultrafast Biomicrofluidics. , 2009, , .		1
176	Inhaled Pulmonary Drug Delivery Platform Using Surface Acoustic Wave Atomization. , 2009, , .		1
177	Laguerre RungeKuttaFehlberg Method for Simulating Laser Pulse Propagation in Biological Tissue. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 105-112.	2.9	16
178	Particle concentration and mixing in microdrops driven by focused surface acoustic waves. Journal of Applied Physics, 2008, 104, .	2.5	268
179	Interfacial destabilization and atomization driven by surface acoustic waves. Physics of Fluids, 2008, 20, .	4.0	229
180	Surface Vibration Induced Spatial Ordering of Periodic Polymer Patterns on a Substrate. Langmuir, 2008, 24, 10629-10632.	3.5	71

#	Article	IF	CITATIONS
181	An ultrasonic piezoelectric motor utilizing axial-torsional coupling in a pretwisted non-circular cross-sectioned prismatic beam. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 832-840.	3.0	30
182	Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization. Nanotechnology, 2008, 19, 145301.	2.6	98
183	Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization. Nanotechnology, 2008, 19, 455103.	2.6	103
184	Nanoparticle patterning on 128-YX-LN substrates: The effects of surface acceleration and boundary layer streaming. , 2008, , .		0
185	Concentration and mixing of particles in microdrops driven by focused surface acoustic waves. , 2008, , .		6
186	Piezoelectric ultrasonic bidirectional linear actuator for micropositioning fulfilling Feynman's criteria. Applied Physics Letters, 2008, 92, 014107.	3.3	29
187	Microfluidic Colloidal Island Formation and Erasure Induced by Surface Acoustic Wave Radiation. Physical Review Letters, 2008, 101, 084502.	7.8	74
188	Electrokinetic Actuation of Low Conductivity Dielectric Liquids. , 2008, , .		1
189	SAW atomization application on inhaled pulmonary drug delivery. , 2008, , .		4
190	Piezoelectric Materials for Microfluidics. , 2008, , 1654-1662.		2
191	Electrowetting, Applications. , 2008, , 606-615.		3
192	Microfluidic blood plasma separation via bulk electrohydrodynamic flows. Biomicrofluidics, 2007, 1, 014103.	2.4	47
193	Modeling of Light Propagation through Biological Tissues: A Novel Approach. , 2007, , .		0
194	Direct visualization of surface acoustic waves along substrates using smoke particles. Applied Physics Letters, 2007, 91, .	3.3	42
195	Vibration analysis of pretwisted beams for the design of hybrid axial-torsional transducers. , 2007, , .		2
196	Rapid production of biocompatible polymeric nanoparticles for functionalization via radio-frequency acoustic atomization. , 2007, , .		0
197	An ultrasonically levitated noncontact stage using traveling vibrations on precision ceramic guide rails. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 597-604.	3.0	31
198	Microparticle collection and concentration via a miniature surface acoustic wave device. Lab on A Chip, 2007, 7, 618.	6.0	168

#	Article	IF	CITATIONS
199	A non-contact linear bearing and actuator via ultrasonic levitation. Sensors and Actuators A: Physical, 2007, 135, 740-747.	4.1	60
200	Surface acoustic wave concentration of particle and bioparticle suspensions. Biomedical Microdevices, 2007, 9, 647-656.	2.8	191
201	A scaffold cell seeding method driven by surface acoustic waves. Biomaterials, 2007, 28, 4098-4104.	11.4	74
202	A simple bidirectional linear microactuator for nanopositioning - the "Baltan" microactuator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 1160-1168.	3.0	40
203	Electrospinning carbon nanotube polymer composite nanofibers. Journal of Experimental Nanoscience, 2006, 1, 177-209.	2.4	134
204	Electric tempest in a teacup: The tea leaf analogy to microfluidic blood plasma separation. Applied Physics Letters, 2006, 89, 103516.	3.3	30
205	Straightforward biodegradable nanoparticle generation through megahertz-order ultrasonic atomization. Applied Physics Letters, 2006, 89, 064105.	3.3	28
206	A Low-Profile Design for the Noncontact Ultrasonically Levitated Stage. Japanese Journal of Applied Physics, 2005, 44, 4662-4665.	1.5	51
207	Resonant Mode Design for Noncontact Ultrasonic Motor with Levitated Rotor. Japanese Journal of Applied Physics, 2005, 44, 4666-4668.	1.5	42
208	Characteristics of Ultrasonic Suction Pump Without Moving Parts. Japanese Journal of Applied Physics, 2005, 44, 4658-4661.	1.5	16
209	A traveling-wave, modified ring linear piezoelectric microactuator with enclosed piezoelectric elements - the "scream" actuator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1343-1353.	3.0	8
210	An ultrasonic linear motor using ridge-mode traveling waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1735-1742.	3.0	19
211	Acoustic Waveguides for Actuators. Japanese Journal of Applied Physics, 2004, 43, 3040-3044.	1.5	6
212	A torsional transducer through in-plane shearing of paired planar piezoelectric elements. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 871-878.	3.0	18
213	A piezoelectric linear actuator formed from a multitude of bimorphs. Sensors and Actuators A: Physical, 2004, 109, 242-251.	4.1	36
214	A Piezoelectric Micromotor Using In-Plane Shearing of PZT Elements. IEEE/ASME Transactions on Mechatronics, 2004, 9, 467-473.	5.8	35
215	A single-element tuning fork piezoelectric linear actuator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50, 179-186.	3.0	30
216	Support Mechanism for the Ball Rotor in the Three-Degree-of-Freedom Ultrasonic Motor. Japanese Journal of Applied Physics, 2003, 42, 3000-3001.	1.5	39

#	Article	IF	CITATIONS
217	Numerical analysis of the hybrid transducer ultrasonic motor: comparison of characteristics calculated by transmission-line and lumped-element models. Ultrasonics, 2002, 39, 559-565.	3.9	5
218	Ultrasonic characterization of poling in lead zirconate titanate ceramics. Applied Physics Letters, 2001, 79, 2794-2796.	3.3	6
219	Traveling wave excitation in a flexural vibration ring by using a torsional-flexural composite transducer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48, 1054-1059.	3.0	14
220	Numerical analysis of the symmetric hybrid transducer ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48, 1625-1631.	3.0	9
221	Torque accumulation of torsional vibration using a vibration disk with nodal circles Journal of the Acoustical Society of Japan (E), 1998, 19, 409-412.	0.1	1
222	Analysis of the 0.668 inch traveling-wave piezoelectric motor. , 1996, , .		0
223	A novel torsional microactuator using bulk PZT. , 0, , .		1
224	An optical tunable notch filter using an ultrasonically induced long period fiber grating. , 0, , .		0
225	An ultrasonically levitated non-contact sliding table with the traveling vibrations on fine-ceramic beams. , 0, , .		3
226	Negativeâ€Index Acoustic Metamaterial Operating above 100 kHz in Water Using Microstructured Silicon Chips as Unit Cells. Advanced Materials Technologies, 0, , 2200407.	5.8	0