Cesar Nombela-Arrieta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7379478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IL-1 mediates microbiome-induced inflammaging of hematopoietic stem cells in mice. Blood, 2022, 139, 44-58.	1.4	51
2	Probabilistic spatial analysis in quantitative microscopy with uncertainty-aware cell detection using deep Bayesian regression. Science Advances, 2022, 8, eabi8295.	10.3	3
3	3D Microscopy of Murine Bone Marrow Hematopoietic Tissues. Methods in Molecular Biology, 2021, 2308, 127-138.	0.9	2
4	Distinct Expression Patterns of Cxcl12 in Mesenchymal Stem Cell Niches of Intact and Injured Rodent Teeth. International Journal of Molecular Sciences, 2021, 22, 3024.	4.1	8
5	Utilizing Uncertainty Estimation in Deep Learning Segmentation of Fluorescence Microscopy Images with Missing Markers. , 2021, , .		1
6	Modality attention and sampling enables deep learning with heterogeneous marker combinations in fluorescence microscopy. Nature Machine Intelligence, 2021, 3, 799-811.	16.0	11
7	CXCL12-abundant reticular cells are the major source of IL-6 upon LPS stimulation and thereby regulate hematopoiesis. Blood Advances, 2021, 5, 5002-5015.	5.2	9
8	Engraftment characterization of risk-stratified AML patients in NSGS mice. Blood Advances, 2021, 5, 4842-4854.	5.2	5
9	Chronic viral infections persistently alter marrow stroma and impair hematopoietic stem cell fitness. Journal of Experimental Medicine, 2021, 218, .	8.5	27
10	Editorial: The Role of Hematopoietic Progenitors in Immune Regulation and Memory. Frontiers in Immunology, 2021, 12, 789139.	4.8	0
11	Imaging and spatial analysis of hematopoietic stem cell niches. Annals of the New York Academy of Sciences, 2020, 1466, 5-16.	3.8	17
12	Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nature Cell Biology, 2020, 22, 38-48.	10.3	521
13	BRAFV 600E or mutant MAP2K1 human CD34+ cells establish Langerhans cell–like histiocytosis in immune-deficient mice. Blood Advances, 2020, 4, 4912-4917.	5.2	6
14	Multiparametric imaging reveals that mitochondriaâ€rich intercalated cells in the kidney collecting duct have a very high glycolytic capacity. FASEB Journal, 2020, 34, 8510-8525.	0.5	12
15	Remodeling of light and dark zone follicular dendritic cells governs germinal center responses. Nature Immunology, 2020, 21, 649-659.	14.5	80
16	Tracking Strain-Specific Morphogenesis and Angiogenesis of Murine Calvaria with Large-Scale Optoacoustic and Ultrasound Microscopy. Journal of Bone and Mineral Research, 2020, 37, 1032-1043.	2.8	4
17	Assessing Cellular Hypoxic Status In Situ Within the Bone Marrow Microenvironment. Methods in Molecular Biology, 2019, 2017, 123-134.	0.9	5
18	Mesenchymal Niche-Specific Expression of Cxcl12 Controls Quiescence of Treatment-Resistant Leukemia Stem Cells. Cell Stem Cell, 2019, 24, 769-784.e6.	11.1	141

#	Article	IF	CITATIONS
19	Platelet GPlbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nature Medicine, 2019, 25, 641-655.	30.7	259
20	Global Transcriptomic Profiling of the Bone Marrow Stromal Microenvironment during Postnatal Development, Aging, and Inflammation. Cell Reports, 2019, 29, 3313-3330.e4.	6.4	79
21	NG2 antigen is a therapeutic target for MLL-rearranged B-cell acute lymphoblastic leukemia. Leukemia, 2019, 33, 1557-1569.	7.2	30
22	Mitochondrial Rich Proton Pumping Cells in the Kidney and Epididymis are Highly Glycolytic. FASEB Journal, 2019, 33, 862.7.	0.5	0
23	Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy. Nature Communications, 2018, 9, 2532.	12.8	109
24	Role of CXCL12-Expressing Mesenchymal Stromal Cell Niches in Maintaining Treatment-Resistant Leukemia Stem Cells. Blood, 2018, 132, 1291-1291.	1.4	1
25	Graft-Vs-Host Reactivity Against the Bone Marrow Is Directed Against the Hematopoietic and Non-Hematopoietic Compartments in Mice. Blood, 2018, 132, 808-808.	1.4	0
26	Reactive Oxygen Species–Producing Myeloid Cells Act as a Bone Marrow Niche for Sterile Inflammation–Induced Reactive Granulopoiesis. Journal of Immunology, 2017, 198, 2854-2864.	0.8	26
27	Pathogen-Induced TLR4-TRIF Innate Immune Signaling in Hematopoietic Stem Cells Promotes Proliferation but Reduces Competitive Fitness. Cell Stem Cell, 2017, 21, 225-240.e5.	11.1	210
28	Quantification and three-dimensional microanatomical organization of the bone marrow. Blood Advances, 2017, 1, 407-416.	5.2	84
29	G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling. Journal of Experimental Medicine, 2016, 213, 1999-2018.	8.5	74
30	The Role of the Bone Marrow Stromal Compartment in the Hematopoietic Response to Microbial Infections. Frontiers in Immunology, 2016, 7, 689.	4.8	22
31	The Bone Marrow Microenvironment Is a Target of Graft-Vs-Host Reactivity Following Allogeneic Hematopoietic Cell Transplantation in Mice. Blood, 2016, 128, 4539-4539.	1.4	0
32	Myeloid Cell-Derived Reactive Oxygen Species Externally Regulate the Proliferation of Myeloid Progenitors in Emergency Granulopoiesis. Immunity, 2015, 42, 159-171.	14.3	85
33	The science behind the hypoxic niche of hematopoietic stem and progenitors. Hematology American Society of Hematology Education Program, 2014, 2014, 542-547.	2.5	37
34	<i>Fgd5</i> identifies hematopoietic stem cells in the murine bone marrow. Journal of Experimental Medicine, 2014, 211, 1315-1331.	8.5	162
35	In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. Blood, 2013, 121, 1255-1264.	1.4	185
36	Sustained PU.1 Levels Balance Cell-Cycle Regulators to Prevent Exhaustion of Adult Hematopoietic Stem Cells. Molecular Cell, 2013, 49, 934-946.	9.7	127

#	Article	IF	CITATIONS
37	Deficiency of Lipid Phosphatase SHIP Enables Long-Term Reconstitution of Hematopoietic Inductive Bone Marrow Microenvironment. Developmental Cell, 2013, 25, 333-349.	7.0	9
38	Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nature Cell Biology, 2013, 15, 533-543.	10.3	461
39	Rhythmic Modulation of the Hematopoietic Niche through Neutrophil Clearance. Cell, 2013, 153, 1025-1035.	28.9	555
40	Focal Adhesion Kinase Regulates the Localization and Retention of Pro-B Cells in Bone Marrow Microenvironments. Journal of Immunology, 2013, 190, 1094-1102.	0.8	44
41	Fak depletion in both hematopoietic and nonhematopoietic niche cells leadsÂtoÂhematopoietic stem cell expansion. Experimental Hematology, 2012, 40, 307-317.e3.	0.4	20
42	The elusive nature and function of mesenchymal stem cells. Nature Reviews Molecular Cell Biology, 2011, 12, 126-131.	37.0	544
43	Hypoxic Hematopoietic Stem and Progenitor Cells Reside in Structurally Diverse Perivascular Niches in the Bone Marrow,. Blood, 2011, 118, 3417-3417.	1.4	0
44	FAK Regulates Progenitor B Cell Growth, Localization and Retention in Bone Marrow Microenvironments. Blood, 2011, 118, 1119-1119.	1.4	1
45	Quantitative Imaging of Femoral Bone Marrow Microenvironments Reveals a Heterogenous Distribution of Hematopoietic Stem and Progenitor Cells Blood, 2009, 114, 1455-1455.	1.4	0
46	Intracellular signaling pathways mediating lymphocyte trafficking. Inmunologia (Barcelona, Spain:) Tj ETQq0 0 0 r	gBT/Over	lock 10 Tf 50
47	Deletion of Fak in Hematopoietic Stem Cells Leads to Enhanced Engraftment Blood, 2008, 112, 1407-1407.	1.4	0
48	A central role for DOCK2 during interstitial lymphocyte motility and sphingosine-1-phosphate–mediated egress. Journal of Experimental Medicine, 2007, 204, 497-510.	8.5	144
49	DOCK2 is Required for Chemokine-Promoted Human T Lymphocyte Adhesion Under Shear Stress Mediated by the Integrin α4β1. Journal of Immunology, 2006, 177, 5215-5225.	0.8	42
50	Chemokine control of lymphocyte trafficking: a general overview. Immunology, 2005, 116, 1-12.	4.4	213
51	Vav1 and Rac Control Chemokine-promoted T Lymphocyte Adhesion Mediated by the Integrin α4β1. Molecular Biology of the Cell, 2005, 16, 3223-3235.	2.1	89
52	Differential Requirements for DOCK2 and Phosphoinositide-3-Kinase Î ³ during T and B Lymphocyte Homing. Immunity, 2004, 21, 429-441.	14.3	219

53	CCR7-mediated physiological lymphocyte homing involves activation of a tyrosine kinase pathway. Blood, 2003, 101, 38-44.	1.4	80
----	---	-----	----