Mary J Pantin-Jackwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7378994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathogenicity of Influenza Viruses with Genes from the 1918 Pandemic Virus: Functional Roles of Alveolar Macrophages and Neutrophils in Limiting Virus Replication and Mortality in Mice. Journal of Virology, 2005, 79, 14933-14944.	3.4	466
2	Enteric Viruses Detected by Molecular Methods in Commercial Chicken and Turkey Flocks in the United States Between 2005 and 2006. Avian Diseases, 2008, 52, 235-244.	1.0	156
3	Lethal Dissemination of H5N1 Influenza Virus Is Associated with Dysregulation of Inflammation and Lipoxin Signaling in a Mouse Model of Infection. Journal of Virology, 2010, 84, 7613-7624.	3.4	135
4	Pathobiology of Asian Highly Pathogenic Avian Influenza H5N1 Virus Infections in Ducks. Avian Diseases, 2007, 51, 250-259.	1.0	129
5	Role of Poultry in the Spread of Novel H7N9 Influenza Virus in China. Journal of Virology, 2014, 88, 5381-5390.	3.4	127
6	Pathogenesis of Pandemic Influenza A (H1N1) and Triple-Reassortant Swine Influenza A (H1) Viruses in Mice. Journal of Virology, 2010, 84, 4194-4203.	3.4	116
7	Removal of Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR) Inhibitors Associated with Cloacal Swab Samples and Tissues for Improved Diagnosis of Avian Influenza Virus by RT-PCR. Journal of Veterinary Diagnostic Investigation, 2009, 21, 771-778.	1.1	114
8	Age at infection affects the pathogenicity of Asian highly pathogenic avian influenza H5N1 viruses in ducks. Virus Research, 2007, 130, 151-161.	2.2	109
9	Periodic Monitoring of Commercial Turkeys for Enteric Viruses Indicates Continuous Presence of Astrovirus and Rotavirus on the Farms. Avian Diseases, 2007, 51, 674-680.	1.0	105
10	A Multiplex RT-PCR Test for the Differential Identification of Turkey Astrovirus Type 1, Turkey Astrovirus Type 2, Chicken Astrovirus, Avian Nephritis Virus, and Avian Rotavirus. Avian Diseases, 2007, 51, 681-684.	1.0	105
11	Molecular Characterization and Typing of Chicken and Turkey Astroviruses Circulating in the United States: Implications for Diagnostics. Avian Diseases, 2006, 50, 397-404.	1.0	98
12	Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards. Journal of Virology, 2016, 90, 9967-9982.	3.4	96
13	Comparative Pathology of Select Agent Influenza A Virus Infections. Veterinary Pathology, 2010, 47, 893-914.	1.7	92
14	Molecular characterization of avian astroviruses. Archives of Virology, 2011, 156, 235-244.	2.1	90
15	The pathogenesis of low pathogenicity H7 avian influenza viruses in chickens, ducks and turkeys. Virology Journal, 2010, 7, 331.	3.4	89
16	Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys. Veterinary Research, 2014, 45, 1.	3.0	81
17	Infectivity, transmission and pathogenicity of H5 highly pathogenic avian influenza clade 2.3.4.4 (H5N8) Tj ETQq1 33.	1 0.7843 3.0	14 rgBT /0 74
18	Pekin and Muscovy ducks respond differently to vaccination with a H5N1 highly pathogenic avian influenza (HPAI) commercial inactivated vaccine. Vaccine, 2011, 29, 6549-6557.	3.8	73

#	Article	IF	CITATIONS
19	NP, PB1, and PB2 Viral Genes Contribute to Altered Replication of H5N1 Avian Influenza Viruses in Chickens. Journal of Virology, 2008, 82, 4544-4553.	3.4	72
20	Characterization of influenza virus variants with different sizes of the non-structural (NS) genes and their potential as a live influenza vaccine in poultry. Vaccine, 2008, 26, 3580-3586.	3.8	68
21	Influenza Virus Respiratory Infection and Transmission Following Ocular Inoculation in Ferrets. PLoS Pathogens, 2012, 8, e1002569.	4.7	66
22	Characterization of the 2012 Highly Pathogenic Avian Influenza H7N3 Virus Isolated from Poultry in an Outbreak in Mexico: Pathobiology and Vaccine Protection. Journal of Virology, 2013, 87, 9086-9096.	3.4	66
23	H7N9 and Other Pathogenic Avian Influenza Viruses Elicit a Three-Pronged Transcriptomic Signature That Is Reminiscent of 1918 Influenza Virus and Is Associated with Lethal Outcome in Mice. Journal of Virology, 2014, 88, 10556-10568.	3.4	63
24	Pathogenesis of H5N1 Influenza Virus Infections in Mice and Ferret Models Differs According to Respiratory Tract or Digestive System Exposure. Journal of Infectious Diseases, 2009, 199, 717-725.	4.0	61
25	Phylogenetic Analysis of Turkey Astroviruses Reveals Evidence of Recombination. Virus Genes, 2006, 32, 187-192.	1.6	60
26	Genomic Profiling of Tumor Necrosis Factor Alpha (TNF-α) Receptor and Interleukin-1 Receptor Knockout Mice Reveals a Link between TNF-α Signaling and Increased Severity of 1918 Pandemic Influenza Virus Infection. Journal of Virology, 2010, 84, 12576-12588.	3.4	59
27	Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks. Veterinary Research, 2013, 44, 62.	3.0	57
28	Changes in adaptation of H5N2 highly pathogenic avian influenza H5 clade 2.3.4.4 viruses in chickens and mallards. Virology, 2016, 499, 52-64.	2.4	56
29	The High Susceptibility of Turkeys to Influenza Viruses of Different Origins Implies Their Importance as Potential Intermediate Hosts. Avian Diseases, 2010, 54, 522-526.	1.0	54
30	Implication of Inflammatory Macrophages, Nuclear Receptors, and Interferon Regulatory Factors in Increased Virulence of Pandemic 2009 H1N1 Influenza A Virus after Host Adaptation. Journal of Virology, 2012, 86, 7192-7206.	3.4	54
31	H5N2 Highly Pathogenic Avian Influenza Viruses from the US 2014-2015 outbreak have an unusually long pre-clinical period in turkeys. BMC Veterinary Research, 2016, 12, 260.	1.9	51
32	Recombinant viral-vectored vaccines for the control of avian influenza in poultry. Veterinary Microbiology, 2017, 206, 144-151.	1.9	50
33	Lack of chicken adaptation of newly emergent Eurasian H5N8 and reassortant H5N2 high pathogenicity avian influenza viruses in the U.S. is consistent with restricted poultry outbreaks in the Pacific flyway during 2014–2015. Virology, 2016, 494, 190-197.	2.4	49
34	A single substitution in amino acid 184 of the NP protein alters the replication and pathogenicity of H5N1 avian influenza viruses in chickens. Archives of Virology, 2009, 154, 969-979.	2.1	46
35	In vivo transcriptional cytokine responses and association with clinical and pathological outcomes in chickens infected with different Newcastle disease virus isolates using formalin-fixed paraffin-embedded samples. Veterinary Immunology and Immunopathology, 2011, 141, 221-229.	1.2	46
36	Effect of age on the pathogenesis and innate immune responses in Pekin ducks infected with different H5N1 highly pathogenic avian influenza viruses. Virus Research, 2012, 167, 196-206.	2.2	46

#	Article	IF	CITATIONS
37	Astrovirus, Reovirus, and Rotavirus Concomitant Infection Causes Decreased Weight Gain in Broad-Breasted White Poults. Avian Diseases, 2010, 54, 16-21.	1.0	45
38	The pathogenesis of H7N8 low and highly pathogenic avian influenza viruses from the United States 2016 outbreak in chickens, turkeys and mallards. PLoS ONE, 2017, 12, e0177265.	2.5	45
39	The pathogenesis of turkey origin reoviruses in turkeys and chickens. Avian Pathology, 2005, 34, 291-296.	2.0	43
40	Efficacy of Commercial Vaccines in Protecting Chickens and Ducks Against H5N1 Highly Pathogenic Avian Influenza Viruses from Vietnam. Avian Diseases, 2010, 54, 262-271.	1.0	42
41	Differences in Pathogenicity, Response to Vaccination, and Innate Immune Responses in Different Types of Ducks Infected with a Virulent H5N1 Highly Pathogenic Avian Influenza Virus from Vietnam. Avian Diseases, 2012, 56, 479-487.	1.0	42
42	Pathogenicity of avian influenza viruses in poultry. Developments in Biologicals, 2006, 124, 61-7.	0.5	42
43	An Evaluation of Avian Influenza Diagnostic Methods with Domestic Duck Specimens. Avian Diseases, 2009, 53, 276-280.	1.0	41
44	Phylogenetic and biological characterization of highly pathogenic H5N1 avian influenza viruses (Vietnam 2005) in chickens and ducks. Virus Research, 2009, 142, 108-120.	2.2	41
45	Transmission Dynamics of Highly Pathogenic Avian Influenza Virus A(H5Nx) Clade 2.3.4.4, North America, 2014–2015. Emerging Infectious Diseases, 2018, 24, 1840-1848.	4.3	41
46	Cell surface display of highly pathogenic avian influenza virus hemagglutinin on the surface of <i>Pichia pastoris</i> cells using αâ€agglutinin for production of oral vaccines. Biotechnology Progress, 2010, 26, 542-547.	2.6	40
47	Susceptibility of Avian Species to North American H13 Low Pathogenic Avian Influenza Viruses. Avian Diseases, 2012, 56, 969-975.	1.0	39
48	Biologic Characterization of H4, H6, and H9 Type Low Pathogenicity Avian Influenza Viruses from Wild Birds in Chickens and Turkeys. Avian Diseases, 2009, 53, 552-562.	1.0	38
49	Sequence and phylogenetic analysis of the S1 genome segment of turkey-origin reoviruses. Virus Genes, 2007, 35, 235-242.	1.6	36
50	Differential host gene expression in cells infected with highly pathogenic H5N1 avian influenza viruses. Veterinary Immunology and Immunopathology, 2008, 125, 291-302.	1.2	36
51	Pathogenesis of type 2 turkey astroviruses with variant capsid genes in 2-day-old specific pathogen free poults. Avian Pathology, 2008, 37, 193-201.	2.0	36
52	Susceptibility of Poultry to Pandemic (H1N1) 2009 Virus. Emerging Infectious Diseases, 2009, 15, 2061-2063.	4.3	36
53	Pathobiological characterization of low-pathogenicity H5 avian influenza viruses of diverse origins in chickens, ducks and turkeys. Archives of Virology, 2010, 155, 1439-1451.	2.1	36
54	Molecular Signatures Associated with Mx1-Mediated Resistance to Highly Pathogenic Influenza Virus Infection: Mechanisms of Survival. Journal of Virology, 2012, 86, 2437-2446.	3.4	36

#	Article	IF	CITATIONS
55	Pathology and Virus Tissue Distribution of Turkey Origin Reoviruses in Experimentally Infected Turkey Poults. Veterinary Pathology, 2007, 44, 185-195.	1.7	34
56	Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses. Veterinary Microbiology, 2015, 177, 7-17.	1.9	33
57	Homologous and heterologous antigenic matched vaccines containing different H5 hemagglutinins provide variable protection of chickens from the 2014 U.S. H5N8 and H5N2 clade 2.3.4.4 highly pathogenic avian influenza viruses. Vaccine, 2017, 35, 6345-6353.	3.8	33
58	Pathogenicity and genomic changes of a 2016 European H5N8 highly pathogenic avian influenza virus (clade 2.3.4.4) in experimentally infected mallards and chickens. Virology, 2019, 537, 172-185.	2.4	33
59	Influenza A viruses remain infectious for more than seven months in northern wetlands of North America. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201680.	2.6	33
60	Pathogenicity of two Egyptian H5N1 highly pathogenic avian influenza viruses in domestic ducks. Archives of Virology, 2011, 156, 37-51.	2.1	32
61	Practical aspects of vaccination of poultry against avian influenza virus. Veterinary Journal, 2014, 202, 408-415.	1.7	32
62	Vaccination of domestic ducks against H5N1 HPAI: A review. Virus Research, 2013, 178, 21-34.	2.2	30
63	Pathobiology of triple reassortant H3N2 influenza viruses in breeder turkeys and its potential implication for vaccine studies in turkeys. Vaccine, 2009, 27, 819-824.	3.8	29
64	International Biological Engagement Programs Facilitate Newcastle Disease Epidemiological Studies. Frontiers in Public Health, 2015, 3, 235.	2.7	29
65	Pathobiology of Clade 2.3.4.4 H5Nx High-Pathogenicity Avian Influenza Virus Infections in Minor Gallinaceous Poultry Supports Early Backyard Flock Introductions in the Western United States in 2014-2015. Journal of Virology, 2017, 91, .	3.4	29
66	Impact of route of exposure and challenge dose on the pathogenesis of H7N9 low pathogenicity avian influenza virus in chickens. Virology, 2015, 477, 72-81.	2.4	28
67	Pathogenicity and transmission of virulent Newcastle disease virus from the 2018–2019 California outbreak and related viruses in young and adult chickens. Virology, 2019, 531, 203-218.	2.4	28
68	Low Pathogenicity Avian Influenza Viruses Infect Chicken Layers by Different Routes of Inoculation. Avian Diseases, 2012, 56, 276-281.	1.0	27
69	The Effect of Infectious Bursal Disease Virus–Induced Immunosuppression on Vaccination Against Highly Pathogenic Avian Influenza Virus. Avian Diseases, 2017, 62, 36.	1.0	27
70	Wild Bird Surveillance for Avian Paramyxoviruses in the Azov-Black Sea Region of Ukraine (2006 to) Tj ETQq0 0 0 Microbiology, 2014, 80, 5427-5438.	rgBT /Ove 3.1	rlock 10 Tf 5 26
71	Avian Influenza Virus Wild Bird Surveillance in the Azov and Black Sea Regions of Ukraine (2010–2011). Avian Diseases, 2012, 56, 1010-1016.	1.0	25
72	Infectious Bursal Disease Virus and Proventriculitis in Broiler Chickens. Avian Diseases, 2003, 47,	1.0	22

681-690.

#	Article	IF	CITATIONS
73	Pathogenicity and transmission studies of H5N2 parrot avian influenza virus of Mexican lineage in different poultry species. Veterinary Microbiology, 2008, 129, 48-57.	1.9	22
74	Age is not a determinant factor in susceptibility of broilers to H5N2 clade 2.3.4.4 high pathogenicity avian influenza virus. Veterinary Research, 2016, 47, 116.	3.0	22
75	Repeated isolation of virulent Newcastle disease viruses of sub-genotype VIId from backyard chickens in Bulgaria and Ukraine between 2002 and 2013. Archives of Virology, 2016, 161, 3345-3353.	2.1	22
76	Seasonal Trivalent Inactivated Influenza Vaccine Protects against 1918 Spanish Influenza Virus Infection in Ferrets. Journal of Virology, 2012, 86, 7118-7125.	3.4	21
77	Previous infection with virulent strains of Newcastle disease virus reduces highly pathogenic avian influenza virus replication, disease, and mortality in chickens. Veterinary Research, 2015, 46, 97.	3.0	21
78	Complete Genome Sequence of an Avian Paramyxovirus Representative of Putative New Serotype 13. Genome Announcements, 2016, 4, .	0.8	21
79	Highly Pathogenic Eurasian H5N8 Avian Influenza Outbreaks in Two Commercial Poultry Flocks in California. Avian Diseases, 2016, 60, 688-693.	1.0	21
80	The Effects of NS Gene Exchange on the Pathogenicity of H5N1 HPAI Viruses in Ducks. Avian Diseases, 2010, 54, 532-537.	1.0	20
81	Biologic Characterization of Chicken-Derived H6N2 Low Pathogenic Avian Influenza Viruses in Chickens and Ducks. Avian Diseases, 2010, 54, 120-125.	1.0	20
82	Protection against H7N3 high pathogenicity avian influenza in chickens immunized with a recombinant fowlpox and an inactivated avian influenza vaccines. Vaccine, 2013, 31, 3572-3576.	3.8	20
83	THE PATHOGENESIS OF CLADE 2.3.4.4 H5 HIGHLY PATHOGENIC AVIAN INFLUENZA VIRUSES IN RUDDY DUCK (<i>OXYURA JAMAICENSIS</i>) AND LESSER SCAUP (<i>AYTHYA AFFINIS</i>). Journal of Wildlife Diseases, 2017, 53, 832-842.	0.8	20
84	Rapid evolution of Mexican H7N3 highly pathogenic avian influenza viruses in poultry. PLoS ONE, 2019, 14, e0222457.	2.5	20
85	Live bird markets as evolutionary epicentres of H9N2 low pathogenicity avian influenza viruses in Korea. Emerging Microbes and Infections, 2020, 9, 616-627.	6.5	20
86	Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A H5N1 viruses in ferrets. Virology, 2017, 502, 114-122.	2.4	19
87	Immunohistochemical Staining of Influenza Virus in Tissues. Methods in Molecular Biology, 2014, 1161, 51-58.	0.9	19
88	Myocarditis Associated with Reovirus in Turkey Poults. Avian Diseases, 2009, 53, 523-532.	1.0	18
89	High-Pathogenicity Avian Influenza Virus in the Reproductive Tract of Chickens. Veterinary Pathology, 2013, 50, 956-960.	1.7	18
90	Pathobiology of Tennessee 2017 H7N9 low and high pathogenicity avian influenza viruses in commercial broiler breeders and specific pathogen free layer chickens. Veterinary Research, 2018, 49, 82.	3.0	17

#	Article	IF	CITATIONS
91	Variation in protection of four divergent avian influenza virus vaccine seed strains against eight clade 2.2.1 and 2.2.1.1. <scp>E</scp> gyptian <scp>H</scp> 5 <scp>N</scp> 1 high pathogenicity variants in poultry. Influenza and Other Respiratory Viruses, 2014, 8, 654-662.	3.4	16
92	Isolation and Genetic Characterization of Avian Influenza Viruses Isolated from Wild Birds in the Azov-Black Sea Region of Ukraine (2001–2012). Avian Diseases, 2016, 60, 365-377.	1.0	15
93	Efficacy of a Recombinant Turkey Herpesvirus H5 Vaccine Against Challenge With H5N1 Clades 1.1.2 and 2.3.2.1 Highly Pathogenic Avian Influenza Viruses in Domestic Ducks (<i>Anas platyrhynchos) Tj ETQq1 1 0.7843</i>	1 4.ng BT/(Ov es lock 10 T
94	Proventriculitis in Broiler Chickens: Effects of Immunosuppression. Avian Diseases, 2004, 48, 300-316.	1.0	13
95	Proventriculitis in Broiler Chickens: Immunohistochemical Characterization of the Lymphocytes Infiltrating the Proventricular Glands. Veterinary Pathology, 2004, 41, 641-648.	1.7	13
96	Reproduction of Proventriculitis in Commercial and Specific-Pathogen-Free Broiler Chickens. Avian Diseases, 2005, 49, 352-360.	1.0	13
97	Turkey Origin Reovirus-Induced Immune Dysfunction in Specific Pathogen Free and Commercial Turkey Poults. Avian Diseases, 2008, 52, 387-391.	1.0	13
98	Limited evidence of intercontinental dispersal of avian paramyxovirus serotype 4 by migratory birds. Infection, Genetics and Evolution, 2016, 40, 104-108.	2.3	13
99	Loss of Fitness of Mexican H7N3 Highly Pathogenic Avian Influenza Virus in Mallards after Circulating in Chickens. Journal of Virology, 2019, 93, .	3.4	13
100	Highly Pathogenic Avian Influenza A(H7N3) Virus in Poultry, United States, 2020. Emerging Infectious Diseases, 2020, 26, 2966-2969.	4.3	13
101	Mutations in PB1, NP, HA, and NA Contribute to Increased Virus Fitness of H5N2 Highly Pathogenic Avian Influenza Virus Clade 2.3.4.4 in Chickens. Journal of Virology, 2021, 95, .	3.4	11
102	Potency, Efficacy, and Antigenic Mapping of H7 Avian Influenza Virus Vaccines Against the 2012 H7N3 Highly Pathogenic Avian Influenza Virus from Mexico. Avian Diseases, 2014, 58, 359-366.	1.0	10
103	Evidence for genetic variation of Eurasian avian influenza viruses of subtype H15: the first report of an H15N7 virus. Archives of Virology, 2016, 161, 605-612.	2.1	9
104	The Pathobiology of H7N3 Low and High Pathogenicity Avian Influenza Viruses from the United States Outbreak in 2020 Differs between Turkeys and Chickens. Viruses, 2021, 13, 1851.	3.3	9
105	Effect of Coronavirus Infection on Reproductive Performance of Turkey Hens. Avian Diseases, 2013, 57, 650-656.	1.0	8
106	Molecular characterization and phylogenetics of a reassortant H13N8 influenza virus isolated from gulls in Mongolia. Virus Genes, 2014, 49, 237-249.	1.6	8
107	The pathogenesis of a North American H5N2 clade 2.3.4.4 group A highly pathogenic avian influenza virus in surf scoters (Melanitta perspicillata). BMC Veterinary Research, 2020, 16, 351.	1.9	8
108	Effect of Infection with a Mesogenic Strain of Newcastle Disease Virus on Infection with Highly Pathogenic Avian Influenza Virus in Chickens. Avian Diseases, 2016, 60, 269-278.	1.0	7

#	Article	IF	CITATIONS
109	The Pathogenesis of H7 Highly Pathogenic Avian Influenza Viruses in Lesser Scaup (Aythya affinis). Avian Diseases, 2019, 63, 230.	1.0	7
110	Immunohistochemical Staining of Influenza Virus in Tissues. Methods in Molecular Biology, 2020, 2123, 29-36.	0.9	7
111	Characterization of H5N1 highly pathogenic avian influenza viruses isolated from poultry in Pakistan 2006–2008. Virus Genes, 2012, 44, 247-252.	1.6	6
112	Pathobiology and innate immune responses of gallinaceous poultry to clade 2.3.4.4A H5Nx highly pathogenic avian influenza virus infection. Veterinary Research, 2019, 50, 89.	3.0	6
113	Detection of newly introduced Y280â€lineage H9N2 avian influenza viruses in live bird markets in Korea. Transboundary and Emerging Diseases, 2022, 69, 881-885.	3.0	6
114	Clade 2.3.4.4 H5 North American Highly Pathogenic Avian Influenza Viruses Infect, but Do Not Cause Clinical Signs in, American Black Ducks (Anas rubripes). Avian Diseases, 2019, 63, 366.	1.0	6
115	Efficacy of Two Licensed Avian Influenza H5 Vaccines Against Challenge with a 2015 U.S. H5N2 clade 2.3.4.4 Highly Pathogenic Avian Influenza Virus in Domestic Ducks. Avian Diseases, 2018, 63, 90.	1.0	6
116	Evolution of the North American Lineage H7 Avian Influenza Viruses in Association with H7 Virus's Introduction to Poultry. Journal of Virology, 2022, 96, .	3.4	6
117	Evaluation of a commercial enzymeâ€linked immunosorbent assay for detection of antibodies against the H5 subtype of <i>Influenza A virus</i> in waterfowl. Influenza and Other Respiratory Viruses, 2013, 7, 1237-1240.	3.4	5
118	Age-dependent pathogenesis of clade 2.3.4.4A H5N2 HPAIV in experimentally infected Broad Breasted White turkeys. Veterinary Microbiology, 2019, 231, 183-190.	1.9	5
119	Immunohistochemical Staining for the Detection of the Avian Influenza Virus in Tissues. , 2008, 436, 77-83.		5
120	Effects of an H7 Highly Pathogenic and Related Low Pathogenic Avian Influenza Virus on Chicken Egg Production, Viability, and Virus Contamination of Egg Contents and Surfaces. Avian Diseases, 2020, 64, 143.	1.0	5
121	The pathogenesis of H3N8 canine influenza virus in chickens, turkeys and ducks. Influenza and Other Respiratory Viruses, 2010, 4, 353-356.	3.4	4
122	The pathogenicity and transmission of live bird market H2N2 avian influenza viruses in chickens, Pekin ducks, and guinea fowl. Veterinary Microbiology, 2021, 260, 109180.	1.9	4
123	Experimental Infection with Low and High Pathogenicity H7N3 Chilean Avian Influenza Viruses in Chiloe Wigeon (Anas sibilatrix) and Cinnamon Teal (Anas cyanoptera). Avian Diseases, 2011, 55, 459-461.	1.0	3
124	Conducting Influenza Virus Pathogenesis Studies in Avian Species. Methods in Molecular Biology, 2014, 1161, 169-183.	0.9	2
125	Identification of Efficacious Vaccines Against Contemporary North American H7 Avian Influenza Viruses. Avian Diseases, 2020, 65, .	1.0	2
126	Phylogenetic analysis, molecular changes, and adaptation to chickens of Mexican lineage H5N2 lowâ€pathogenic avian influenza viruses from 1994 to 2019. Transboundary and Emerging Diseases, 2022, 69, .	3.0	2

#	Article	IF	CITATIONS
127	Low Pathogenicity H7N3 Avian Influenza Viruses Have Higher Within-Host Genetic Diversity Than a Closely Related High Pathogenicity H7N3 Virus in Infected Turkeys and Chickens. Viruses, 2022, 14, 554.	3.3	2
128	Conducting Influenza Virus Pathogenesis Studies in Avian Species. Methods in Molecular Biology, 2020, 2123, 195-209.	0.9	1