
Thomas J Mccarthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7378896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrahydrophobic and Ultralyophobic Surfaces:Â Some Comments and Examples. Langmuir, 1999, 15, 3395-3399.	1.6	1,117
2	Contact Angle Hysteresis Explained. Langmuir, 2006, 22, 6234-6237.	1.6	702
3	How Wenzel and Cassie Were Wrong. Langmuir, 2007, 23, 3762-3765.	1.6	696
4	The "Lotus Effect―Explained: Two Reasons Why Two Length Scales of Topography Are Important. Langmuir, 2006, 22, 2966-2967.	1.6	625
5	Ultrahydrophobic Polymer Surfaces Prepared by Simultaneous Ablation of Polypropylene and Sputtering of Poly(tetrafluoroethylene) Using Radio Frequency Plasma. Macromolecules, 1999, 32, 6800-6806.	2.2	543
6	Self-Assembly Is Not the Only Reaction Possible between Alkyltrichlorosilanes and Surfaces: Monomolecular and Oligomeric Covalently Attached Layers of Dichloro- and Trichloroalkylsilanes on Silicon. Langmuir, 2000, 16, 7268-7274.	1.6	542
7	A Surprise from 1954: Siloxane Equilibration Is a Simple, Robust, and Obvious Polymer Self-Healing Mechanism. Journal of the American Chemical Society, 2012, 134, 2024-2027.	6.6	477
8	A Perfectly Hydrophobic Surface (Î,A/Î,R= 180°/180°). Journal of the American Chemical Society, 2006, 128, 9052-9053.	6.6	412
9	Preparation and Characterization of Microcellular Polystyrene Foams Processed in Supercritical Carbon Dioxide. Macromolecules, 1998, 31, 4614-4620.	2.2	346
10	Trialkylsilane Monolayers Covalently Attached to Silicon Surfaces:Â Wettability Studies Indicating that Molecular Topography Contributes to Contact Angle Hysteresis. Langmuir, 1999, 15, 3759-3766.	1.6	335
11	Covalently Attached Liquids: Instant Omniphobic Surfaces with Unprecedented Repellency. Angewandte Chemie - International Edition, 2016, 55, 244-248.	7.2	299
12	Acid-base behavior of carboxylic acid groups covalently attached at the surface of polyethylene: The usefulness of contact angle in following the ionization of surface functionality. Langmuir, 1985, 1, 725-740.	1.6	290
13	Teflon is Hydrophilic. Comments on Definitions of Hydrophobic, Shear versus Tensile Hydrophobicity, and Wettability Characterization. Langmuir, 2008, 24, 9183-9188.	1.6	210
14	Rediscovering Silicones: "Unreactive―Silicones React with Inorganic Surfaces. Langmuir, 2011, 27, 11514-11519.	1.6	179
15	Poly(4-methyl-1-pentene)-Supported Polyelectrolyte Multilayer Films:Â Preparation and Gas Permeability1. Macromolecules, 1997, 30, 1752-1757.	2.2	160
16	Expansion of Polystyrene Using Supercritical Carbon Dioxide:Â Effects of Molecular Weight, Polydispersity, and Low Molecular Weight Components. Macromolecules, 1999, 32, 7610-7616.	2.2	144
17	Adsorption of Poly(vinyl alcohol) onto Hydrophobic Substrates. A General Approach for Hydrophilizing and Chemically Activating Surfaces. Macromolecules, 2003, 36, 6054-6059.	2.2	101
18	Compressive behavior of microcellular polystyrene foams processed in supercritical carbon dioxide. Polymer Engineering and Science, 1998, 38, 2055-2062.	1.5	90

#	Article	IF	CITATIONS
19	Binary Monolayer Mixtures:Â Modification of Nanopores in Silicon-Supported Tris(trimethylsiloxy)silyl Monolayers. Langmuir, 1999, 15, 7238-7243.	1.6	88
20	Rediscovering Silicones: Molecularly Smooth, Low Surface Energy, Unfilled, UV/Vis-Transparent, Extremely Cross-Linked, Thermally Stable, Hard, Elastic PDMS. Langmuir, 2010, 26, 18585-18590.	1.6	85
21	Reactions of Organosilanes with Silica Surfaces in Carbon Dioxide. Langmuir, 2001, 17, 757-761.	1.6	82
22	Surface Modification of Poly(ethylene terephthalate) To Prepare Surfaces with Silica-Like Reactivity. Langmuir, 1998, 14, 5586-5593.	1.6	78
23	Dip-Coating Crystallization on a Superhydrophobic Surface: A Million Mounted Crystals in a 1 cm ² Array. Journal of the American Chemical Society, 2011, 133, 5764-5766.	6.6	64
24	Contact Angle Hysteresis on Superhydrophobic Surfaces: An Ionic Liquid Probe Fluid Offers Mechanistic Insight. Langmuir, 2011, 27, 2166-2169.	1.6	63
25	Reply to "Comment on How Wenzel and Cassie Were Wrong by Gao and McCarthy― Langmuir, 2007, 23, 13243-13243.	1.6	62
26	Polymer surface reconstruction by diffusion of organic functional groups from and to the surface. Journal of Applied Polymer Science, 1984, 29, 4335-4340.	1.3	55
27	Two-Step Surface Modification of Chemically Resistant Polymers:Â Blend Formation and Subsequent Chemistry1. Macromolecules, 1998, 31, 4791-4797.	2.2	54
28	Dehydrofluorination of poly(vinylidene fluoride) in dimethylformamide solution: Synthesis of an operationally soluble semiconducting polymer. Journal of Polymer Science: Polymer Chemistry Edition, 1985, 23, 1057-1061.	0.8	45
29	Liquid Marbles Supported by Monodisperse Poly(methylsilsesquioxane) Particles. Langmuir, 2014, 30, 9071-9075.	1.6	43
30	Two-Dimensional Fluidics Based on Differential Lyophobicity and Gravity. Langmuir, 2006, 22, 4914-4916.	1.6	42
31	Simple and Improved Approaches to Long-Lasting, Hydrophilic Silicones Derived from Commercially Available Precursors. ACS Applied Materials & Interfaces, 2014, 6, 22876-22883.	4.0	41
32	Rediscovering Silicones: MQ Copolymers. Macromolecules, 2016, 49, 8581-8592.	2.2	41
33	Adsorption of End-Functionalized Poly(ethylene oxide)s to the Poly(ethylene oxide)â^Air Interface. Macromolecules, 1997, 30, 840-845.	2.2	38
34	Using the Fact that Wetting Is Contact Line Dependent. Langmuir, 2011, 27, 3693-3697.	1.6	29
35	Buried Interface Modification Using Supercritical Carbon Dioxide. Langmuir, 2002, 18, 683-687.	1.6	28
36	Locally Anisotropic Porous Materials from Polyethylene and Crystallizable Diluents. Macromolecules, 2009, 42, 8827-8834.	2.2	27

#	Article	IF	CITATIONS
37	Rediscovering Silicones: The Anomalous Water Permeability of "Hydrophobic―PDMS Suggests Nanostructure and Applications in Water Purification and Anti″cing. Macromolecular Rapid Communications, 2021, 42, e2000682.	2.0	25
38	Rapid and Clean Covalent Attachment of Methylsiloxane Polymers and Oligomers to Silica Using B(C ₆ F ₅) ₃ Catalysis. Langmuir, 2017, 33, 8129-8139.	1.6	24
39	Hydrophobization of Inorganic Oxide Surfaces Using Dimethylsilanediol. Langmuir, 2013, 29, 1329-1332.	1.6	22
40	Composites Prepared by the Anionic Polymerization of Ethyl 2-Cyanoacrylate within Supercritical Carbon Dioxideâ^'Swollen Poly(tetrafluoroethylene-co-hexafluoropropylene). Macromolecules, 2000, 33, 8192-8199.	2.2	21
41	D ₄ ^H /D ₄ ^V Silicone: A Replica Material with Several Advantages for Nanoimprint Lithography and Capillary Force Lithography. Langmuir, 2011, 27, 7976-7979.	1.6	21
42	Superhydrophobic, Low-Hysteresis Patterning Chemistry for Water-Drop Manipulation. ACS Applied Materials & Interfaces, 2017, 9, 41126-41130.	4.0	20
43	Capillary-bridge–derived particles with negative Gaussian curvature. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2664-2669.	3.3	19
44	Dip-Coating Deposition on Chemically Patterned Surfaces: A Mechanistic Analysis and Comparison with Topographically Patterned Surfaces. Langmuir, 2014, 30, 2419-2428.	1.6	18
45	Adsorption of Alginic Acid and Chondroitin Sulfate-A to Amine Functionality Introduced on Polychlorotrifluoroethylene and Glass Surfaces. Macromolecules, 1999, 32, 4106-4112.	2.2	13
46	Supercritical CO2 welding of laminated linear low density polyethylene films. Polymer Engineering and Science, 2001, 41, 2259-2265.	1.5	13
47	Sulfone-Containing Methacrylate Homopolymers: Wetting and Thermal Properties. Langmuir, 2016, 32, 765-771.	1.6	13
48	In situ polymerization and nano-templating phenomenon in nylon fiber/PMMA composite laminates. Journal of Applied Polymer Science, 2003, 88, 1600-1607.	1.3	11
49	Evaluating the mechanical performance of supercritical CO2 fabricated polymide 6,6/PMMA, fiber reinforced composites. Polymer Composites, 2003, 24, 545-554.	2.3	8
50	Control of wettability of polymers using organic surface chemistry. Journal of Adhesion Science and Technology, 1992, 6, 719-731.	1.4	7
51	Polyurethanes Based on Fluorinated Diols. ACS Symposium Series, 1996, , 362-376.	0.5	7
52	Self-reinforcing isotactic polypropylene prepared using crystallizable solvents. Journal of Applied Polymer Science, 2009, 113, 3564-3576.	1.3	6
53	Carbon Nanotubes Readily Disperse in Linear Silicones and Improve the Thermal Stability of Dimethylsilicone Elastomers. Langmuir, 2019, 35, 13396-13404.	1.6	5
54	Amoebae Assemble Synthetic Spherical Particles To Form Reproducible Constructs. Langmuir, 2019, 35, 5069-5074.	1.6	4

THOMAS J MCCARTHY

#	Article	IF	CITATIONS
55	A Different Silica Surface: Radical Oxidation of Poly(methylsilsesquioxane) Thin Films and Particles (Tospearl). Langmuir, 2020, 36, 10110-10119.	1.6	4
56	Gravimetric analysis of polymer surface chemistry: A sensitive technique for monitoring reactions at polymer surfaces. Journal of Polymer Science, Polymer Letters Edition, 1985, 23, 33-36.	0.4	2
57	Poly(L-Lysine) Adsorption to Fluoropolymer Films. Materials Research Society Symposia Proceedings, 1990, 218, 57.	0.1	1
58	End group effect in polymer adsorption: Competitive adsorption of carboxylic acidâ€ŧerminated and unfunctionalized polystyrene. Journal of Chemical Physics, 1990, 92, 6970-6971.	1.2	0
59	A New Approach to Fabricating Cellulosic–Polymer Composites. Composite Interfaces, 2009, 16, 825-836.	1.3	0
60	Sessile Liquid Features as Molds for Silicone Elastomers. Langmuir, 2020, 36, 4289-4298.	1.6	0
61	Reply to Comment on "Amoebae Assemble Synthetic Spherical Particles To Form Reproducible Constructs― Langmuir, 2020, 36, 4564-4564.	1.6	0
62	Isomeric Silicones: Reactive Phenylsilsesquioxane-Based MT Resins and Comments Concerning the Structure of the Phenylsilsesquioxane Homopolymer. Macromolecules, 2022, 55, 5803-5815.	2.2	0