List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7377767/publications.pdf Version: 2024-02-01

GENCTAO FU

#	Article	IF	CITATIONS
1	Hollow yolk-shell nanoboxes assembled by Fe-doped Mn3O4 nanosheets for high-efficiency electrocatalytic oxygen reduction in Zn-Air battery. Chemical Engineering Journal, 2022, 427, 131992.	12.7	68
2	Surface chemical reconstruction of hierarchical hollow inverse-spinel manganese cobalt oxide boosting oxygen evolution reaction. Chemical Engineering Journal, 2022, 431, 133829.	12.7	72
3	Nitrogen vacancies enriched Ce-doped Ni3N hierarchical nanosheets triggering highly-efficient urea oxidation reaction in urea-assisted energy-saving electrolysis. Journal of Energy Chemistry, 2022, 69, 506-515.	12.9	97
4	Citrulline-induced mesoporous CoS/CoO heterojunction nanorods triggering high-efficiency oxygen electrocatalysis in solid-state Zn-air batteries. Chemical Engineering Journal, 2022, 434, 134744.	12.7	55
5	Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction. , 2022, 1, 100020.		124
6	Recent advances in rare-earth-based materials for electrocatalysis. Chem Catalysis, 2022, 2, 967-1008.	6.1	75
7	Boosting Electrocatalytic Oxygen Evolution over Ceâ^Co ₉ S ₈ Core–Shell Nanoneedle Arrays by Electronic and Architectural Dual Engineering. Chemistry - A European Journal, 2022, 28, .	3.3	19
8	Rareâ€Earth Singleâ€Atom Catalysts: A New Frontier in Photo/Electrocatalysis. Small Methods, 2022, 6, .	8.6	63
9	Interface engineering in transition metal-based heterostructures for oxygen electrocatalysis. Materials Chemistry Frontiers, 2021, 5, 1033-1059.	5.9	64
10	Engineering hollow porous platinum-silver double-shelled nanocages for efficient electro-oxidation of methanol. Applied Catalysis B: Environmental, 2021, 282, 119595.	20.2	82
11	Facile synthesis of channel-rich ultrathin palladium-silver nanosheets for highly efficient formic acid electrooxidation. Materials Today Energy, 2021, 19, 100596.	4.7	28
12	<i>ChemElectroChem</i> : Beyond Lithiumâ€lon Batteries. ChemElectroChem, 2021, 8, 1149-1149.	3.4	4
13	Recent Advances in Aminoâ€Based Molecules Assisted Control of Nobleâ€Metal Electrocatalysts. Small, 2021, 17, 2007179.	10.0	19
14	Recent Advances in Electrocatalysts for Alkaline Hydrogen Oxidation Reaction. Small, 2021, 17, e2100391.	10.0	56
15	Hydrogen-Intercalation-Induced Lattice Expansion of Pd@Pt Core–Shell Nanoparticles for Highly Efficient Electrocatalytic Alcohol Oxidation. Journal of the American Chemical Society, 2021, 143, 11262-11270.	13.7	121
16	Iminodiacetonitrile induce-synthesis of two-dimensional PdNi/Ni@carbon nanosheets with uniform dispersion and strong interface bonding as an effective bifunctional eletrocatalyst in air-cathode. Energy Storage Materials, 2021, 42, 118-128.	18.0	64
17	Recent progress of electrospun porous carbon-based nanofibers for oxygen electrocatalysis. Materials Today Energy, 2021, 22, 100850.	4.7	18
18	Gd-induced electronic structure engineering of a NiFe-layered double hydroxide for efficient oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 2999-3006.	10.3	133

#	Article	IF	CITATIONS
19	The use of amino-based functional molecules for the controllable synthesis of noble-metal nanocrystals: a minireview. Nanoscale Advances, 2021, 3, 1813-1829.	4.6	10
20	Editorial: Carbon-Based Bifunctional Oxygen Electrocatalysts. Frontiers in Chemistry, 2020, 8, 713.	3.6	2
21	Atomically Dispersed CoN ₄ /B, N-C Nanotubes Boost Oxygen Reduction in Rechargeable Zn–Air Batteries. ACS Applied Energy Materials, 2020, 3, 4539-4548.	5.1	53
22	Interface engineering of oxygen-vacancy-rich CoP/CeO2 heterostructure boosts oxygen evolution reaction. Chemical Engineering Journal, 2020, 395, 125160.	12.7	174
23	Sulfurated Metal–Organic Framework-Derived Nanocomposites for Efficient Bifunctional Oxygen Electrocatalysis and Rechargeable Zn–Air Battery. ACS Sustainable Chemistry and Engineering, 2020, 8, 9226-9234.	6.7	79
24	Dual Singleâ€Atomic Niâ€N ₄ and Feâ€N ₄ Sites Constructing Janus Hollow Graphene for Selective Oxygen Electrocatalysis. Advanced Materials, 2020, 32, e2003134.	21.0	376
25	General Strategy for Synthesis of Ordered Pt ₃ M Intermetallics with Ultrasmall Particle Size. Angewandte Chemie, 2020, 132, 7931-7937.	2.0	20
26	Gadoliniumâ€Induced Valence Structure Engineering for Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2020, 10, 1903833.	19.5	114
27	Embedded PdFe@N-carbon nanoframes for oxygen reduction in acidic fuel cells. Carbon, 2020, 164, 369-377.	10.3	43
28	B, N-doped ultrathin carbon nanosheet superstructure for high-performance oxygen reduction reaction in rechargeable zinc-air battery. Carbon, 2020, 164, 398-406.	10.3	96
29	General Strategy for Synthesis of Ordered Pt ₃ M Intermetallics with Ultrasmall Particle Size. Angewandte Chemie - International Edition, 2020, 59, 7857-7863.	13.8	103
30	Concave PtCo nanocrosses for methanol oxidation reaction. Applied Catalysis B: Environmental, 2020, 277, 119135.	20.2	109
31	Oxygen Vacancy–Rich Inâ€Doped CoO/CoP Heterostructure as an Effective Air Cathode for Rechargeable Zn–Air Batteries. Small, 2019, 15, e1904210.	10.0	142
32	Hollow Co ₃ O ₄ /CeO ₂ Heterostructures in Situ Embedded in N-Doped Carbon Nanofibers Enable Outstanding Oxygen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 17950-17957.	6.7	112
33	Sub-5 nm palladium nanoparticles <i>in situ</i> embedded in N-doped carbon nanoframes: facile synthesis, excellent sinter resistance and electrocatalytic properties. Journal of Materials Chemistry A, 2019, 7, 26243-26249.	10.3	40
34	Bifunctional N-CoSe ₂ /3D-MXene as Highly Efficient and Durable Cathode for Rechargeable Zn–Air Battery. , 2019, 1, 432-439.		90
35	Cu ₅ Pt Dodecahedra with Low-Pt Content: Facile Synthesis and Outstanding Formic Acid Electrooxidation. ACS Applied Materials & Interfaces, 2019, 11, 34869-34877.	8.0	43
36	Treelike two-level PdxAgy nanocrystals tailored for bifunctional fuel cell electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 5248-5257.	10.3	42

#	Article	IF	CITATIONS
37	Porous PdRh nanobowls: facile synthesis and activity for alkaline ethanol oxidation. Nanoscale, 2019, 11, 2974-2980.	5.6	62
38	Ni-foam supported Co(OH)F and Co–P nanoarrays for energy-efficient hydrogen production <i>via</i> urea electrolysis. Journal of Materials Chemistry A, 2019, 7, 3697-3703.	10.3	235
39	Facile synthesis of porous PdCu nanoboxes for efficient chromium(<scp>vi</scp>) reduction. CrystEngComm, 2019, 21, 3654-3659.	2.6	23
40	Hierarchically Porous Co/Co <i>_x</i> M <i>_y</i> (M = P, N) as an Efficient Mott–Schottky Electrocatalyst for Oxygen Evolution in Rechargeable Zn–Air Batteries. Small, 2019, 15, e1901518.	10.0	163
41	Superior Oxygen Electrocatalysis on Nickel Indium Thiospinels for Rechargeable Zn–Air Batteries. , 2019, 1, 123-131.		199
42	Recent progress in Co ₉ S ₈ -based materials for hydrogen and oxygen electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 16068-16088.	10.3	95
43	Hybrid-Cyanogels Induced Sandwich-like N,P-Carbon/SnNi10P3 for Excellent Lithium Storage. ACS Applied Energy Materials, 2019, 2, 3683-3691.	5.1	8
44	Facile synthesis of Co–Fe–B–P nanochains as an efficient bifunctional electrocatalyst for overall water-splitting. Nanoscale, 2019, 11, 7506-7512.	5.6	195
45	Ptâ€Like Oxygen Reduction Activity Induced by Costâ€Effective MnFeO ₂ /Nâ€Carbon. Chemistry - A European Journal, 2019, 25, 6226-6232.	3.3	18
46	Hydrogelâ€Derived Honeycomb Ni ₃ S ₄ /N,Pâ€C as an Efficient Oxygen Evolution Catalyst. Chemistry - A European Journal, 2019, 25, 7561-7568.	3.3	38
47	Ternary metal sulfides for electrocatalytic energy conversion. Journal of Materials Chemistry A, 2019, 7, 9386-9405.	10.3	225
48	A novel strategy for the synthesis of hollow Pt–Cu tetradecahedrons as an efficient electrocatalyst toward methanol oxidation. CrystEngComm, 2019, 21, 1903-1909.	2.6	26
49	Alveolate porous carbon aerogels supported Co9S8 derived from a novel hybrid hydrogel for bifunctional oxygen electrocatalysis. Carbon, 2019, 144, 557-566.	10.3	177
50	Three-Dimensional Graphene-Supported Ni ₃ Fe/Co ₉ S ₈ Composites: Rational Design and Active for Oxygen Reversible Electrocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 4028-4036.	8.0	79
51	1-Naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells. Nano Research, 2019, 12, 323-329.	10.4	43
52	Structurally Ordered Fe ₃ Pt Nanoparticles on Robust Nitride Support as a High Performance Catalyst for the Oxygen Reduction Reaction. Advanced Energy Materials, 2019, 9, 1803040.	19.5	96
53	3D Robust Carbon Aerogels Immobilized with Pd ₃ Pb Nanoparticles for Oxygen Reduction Catalysis. ACS Applied Nano Materials, 2018, 1, 1904-1911.	5.0	29
54	Recent Advances in Carbonâ€Based Bifunctional Oxygen Electrocatalysts for Znâ^'Air Batteries. ChemElectroChem, 2018, 5, 1424-1434.	3.4	129

#	Article	IF	CITATIONS
55	Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation. Nano Research, 2018, 11, 4686-4696.	10.4	67
56	Facile Synthesis of Porous Pd ₃ Pt Half‧hells with Rich "Active Sites―as Efficient Catalysts for Formic Acid Oxidation. Small, 2018, 14, e1703940.	10.0	92
57	MoS _{0.5} Se _{1.5} Embedded in 2D Porous Carbon Sheets Boost Lithium Storage Performance as an Anode Material. Advanced Materials Interfaces, 2018, 5, 1701604.	3.7	20
58	Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Research, 2018, 11, 499-510.	10.4	86
59	General Strategy for Synthesis of Pd ₃ M (M = Co and Ni) Nanoassemblies as Highâ€Performance Catalysts for Electrochemical Oxygen Reduction. Advanced Materials Interfaces, 2018, 5, 1701015.	3.7	30
60	Boosting Bifunctional Oxygen Electrocatalysis with 3D Graphene Aerogel‣upported Ni/MnO Particles. Advanced Materials, 2018, 30, 1704609.	21.0	547
61	Robust N-doped carbon aerogels strongly coupled with iron–cobalt particles as efficient bifunctional catalysts for rechargeable Zn–air batteries. Nanoscale, 2018, 10, 19937-19944.	5.6	144
62	Exploring Indiumâ€Based Ternary Thiospinel as Conceivable Highâ€Potential Air athode for Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8, 1802263.	19.5	248
63	Core–shell CuPd@Pd tetrahedra with concave structures and Pd-enriched surface boost formic acid oxidation. Journal of Materials Chemistry A, 2018, 6, 10632-10638.	10.3	75
64	Boosting Oxygen Reduction Catalysis with N-doped Carbon Coated Co ₉ S ₈ Microtubes. ACS Applied Materials & Interfaces, 2018, 10, 25415-25421.	8.0	89
65	Robust bifunctional oxygen electrocatalyst with a "rigid and flexible―structure for air-cathodes. NPG Asia Materials, 2018, 10, 618-629.	7.9	83
66	Highly simple and rapid synthesis of ultrathin gold nanowires with (111)-dominant facets and enhanced electrocatalytic properties. Journal of Materials Chemistry A, 2018, 6, 17682-17687.	10.3	61
67	Photocatalytic CO ₂ Reduction by Carbon-Coated Indium-Oxide Nanobelts. Journal of the American Chemical Society, 2017, 139, 4123-4129.	13.7	434
68	Carbon supported ultrafine gold phosphorus nanoparticles as highly efficient electrocatalyst for alkaline ethanol oxidation reaction. Electrochimica Acta, 2017, 231, 13-19.	5.2	21
69	Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn-air battery. Nano Energy, 2017, 39, 77-85.	16.0	216
70	Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithiumâ€lon Batteries. Angewandte Chemie, 2017, 129, 771-774.	2.0	72
71	Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2017, 56, 753-756.	13.8	449
72	Robust Fe ₃ Mo ₃ C Supported IrMn Clusters as Highly Efficient Bifunctional Air Electrode for Metal–Air Battery. Advanced Materials, 2017, 29, 1702385.	21.0	90

#	Article	IF	CITATIONS
73	In Situ Integration of Ultrathin PtCu Nanowires with Reduced Graphene Oxide Nanosheets for Efficient Electrocatalytic Oxygen Reduction. Chemistry - A European Journal, 2017, 23, 16871-16876.	3.3	36
74	White phosphorus derived PdAu–P ternary alloy for efficient methanol electrooxidation. Catalysis Science and Technology, 2017, 7, 3355-3360.	4.1	27
75	Ni ₃ FeN‣upported Fe ₃ Pt Intermetallic Nanoalloy as a Highâ€Performance Bifunctional Catalyst for Metal–Air Batteries. Angewandte Chemie, 2017, 129, 10033-10037.	2.0	25
76	FeOOH-Templated synthesis of hollow porous platinum nanotubes as superior electrocatalysts towards methanol electrooxidation. New Journal of Chemistry, 2017, 41, 8812-8817.	2.8	18
77	Ni ₃ FeN‣upported Fe ₃ Pt Intermetallic Nanoalloy as a Highâ€Performance Bifunctional Catalyst for Metal–Air Batteries. Angewandte Chemie - International Edition, 2017, 56, 9901-9905.	13.8	175
78	Ni ₃ Feâ€N Doped Carbon Sheets as a Bifunctional Electrocatalyst for Air Cathodes. Advanced Energy Materials, 2017, 7, 1601172.	19.5	369
79	l-Glutamic acid derived PtPd@Pt core/satellite nanoassemblies as an effectively cathodic electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 3774-3779.	10.3	46
80	PdCo/Pd-Hexacyanocobaltate Hybrid Nanoflowers: Cyanogel-Bridged One-Pot Synthesis and Their Enhanced Catalytic Performance. Scientific Reports, 2016, 6, 32402.	3.3	17
81	Catalytic activities for methanol oxidation on ultrathin CuPt ₃ wavy nanowires with/without smart polymer. Chemical Science, 2016, 7, 5414-5420.	7.4	71
82	Novel Hydrogel-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Air Cathodes. Nano Letters, 2016, 16, 6516-6522.	9.1	241
83	Na _{<i>x</i>} MV(PO ₄) ₃ (M = Mn, Fe, Ni) Structure and Properties for Sodium Extraction. Nano Letters, 2016, 16, 7836-7841.	9.1	229
84	Spinel MnCo2O4 nanoparticles cross-linked with two-dimensional porous carbon nanosheets as a high-efficiency oxygen reduction electrocatalyst. Nano Research, 2016, 9, 2110-2122.	10.4	57
85	Dendritic platinum–copper bimetallic nanoassemblies with tunable composition and structure: Arginine-driven self-assembly and enhanced electrocatalytic activity. Nano Research, 2016, 9, 755-765.	10.4	94
86	Facile Synthesis of Interconnected Porous Pt Nanospheres for Efficient Electrocatalytic Formic Acid Oxidation. Science of Advanced Materials, 2016, 8, 1268-1274.	0.7	0
87	Polyhedral Palladium–Silver Alloy Nanocrystals as Highly Active and Stable Electrocatalysts for the Formic Acid Oxidation Reaction. Scientific Reports, 2015, 5, 13703.	3.3	64
88	Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy, 2015, 12, 824-832.	16.0	126
89	Arginine-assisted synthesis of palladium nanochain networks and their enhanced electrocatalytic activity for borohydride oxidation. RSC Advances, 2015, 5, 18111-18115.	3.6	21
90	Nanobranched porous palladium–tin intermetallics: One-step synthesis and their superior electrocatalysis towards formic acid oxidation. Journal of Power Sources, 2015, 280, 141-146.	7.8	60

#	Article	IF	CITATIONS
91	Arginine-mediated synthesis of cube-like platinum nanoassemblies as efficient electrocatalysts. Nano Research, 2015, 8, 3963-3971.	10.4	34
92	Hollow and porous palladium nanocrystals: synthesis and electrocatalytic application. Journal of Materials Chemistry A, 2015, 3, 21995-21999.	10.3	31
93	Arginine-Assisted Synthesis and Catalytic Properties of Single-Crystalline Palladium Tetrapods. ACS Applied Materials & Interfaces, 2014, 6, 22790-22795.	8.0	106
94	Multi-generation overgrowth induced synthesis of three-dimensional highly branched palladium tetrapods and their electrocatalytic activity for formic acid oxidation. Nanoscale, 2014, 6, 2776.	5.6	30
95	Ptâ€Pdâ€Co Trimetallic Alloy Network Nanostructures with Superior Electrocatalytic Activity towards the Oxygen Reduction Reaction. Chemistry - A European Journal, 2014, 20, 585-590.	3.3	76
96	Autocatalysis and Selective Oxidative Etching Induced Synthesis of Platinum–Copper Bimetallic Alloy Nanodendrites Electrocatalysts. ACS Applied Materials & Interfaces, 2014, 6, 7301-7308.	8.0	166
97	<scp>l</scp> -Lysine mediated synthesis of platinum nanocuboids and their electrocatalytic activity towards ammonia oxidation. Journal of Materials Chemistry A, 2014, 2, 17883-17888.	10.3	31
98	A facile, one-pot synthesis of highly branched Au nanocorals and their enhanced electrocatalytic activity for ethanol oxidation. CrystEngComm, 2014, 16, 8576-8581.	2.6	21
99	Facile water-based synthesis and catalytic properties of platinum–gold alloy nanocubes. CrystEngComm, 2014, 16, 1606-1610.	2.6	59
100	Hydrothermal synthesis of Pt–Ag alloy nano-octahedra and their enhanced electrocatalytic activity for the methanol oxidation reaction. Nanoscale, 2014, 6, 12310-12314.	5.6	56
101	Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Research, 2014, 7, 1205-1214.	10.4	118
102	Highly branched platinum nanolance assemblies by polyallylamine functionalization as superior active, stable, and alcohol-tolerant oxygen reduction electrocatalysts. Nanoscale, 2014, 6, 8226-8234.	5.6	61
103	One-pot, water-based and high-yield synthesis of tetrahedral palladium nanocrystal decorated graphene. Nanoscale, 2013, 5, 8007.	5.6	105
104	Green synthesis and catalytic properties of polyallylamine functionalized tetrahedral palladium nanocrystals. Applied Catalysis B: Environmental, 2013, 138-139, 167-174.	20.2	48
105	Water-based synthesis and sensing application of polyallylamine functionalized platinum nanodendrite assemblies. Journal of Materials Chemistry A, 2013, 1, 14874.	10.3	11
106	Polyallylamine-directed green synthesis of platinum nanocubes. Shape and electronic effect codependent enhanced electrocatalytic activity. Physical Chemistry Chemical Physics, 2013, 15, 3793.	2.8	68
107	One-Pot Water-Based Synthesis of Pt–Pd Alloy Nanoflowers and Their Superior Electrocatalytic Activity for the Oxygen Reduction Reaction and Remarkable Methanol-Tolerant Ability in Acid Media. Journal of Physical Chemistry C, 2013, 117, 9826-9834.	3.1	246
108	Synthesis, Selfâ€Assembly, and Electrocatalysis of Polyallylamineâ€Functionalized Platinum Nanocubes. ChemPlusChem, 2013, 78, 623-627.	2.8	11

#	Article	IF	CITATIONS
109	Efficient anchorage of highly dispersed and ultrafine palladium nanoparticles on the water-soluble phosphonate functionalized multiwall carbon nanotubes. Applied Catalysis B: Environmental, 2013, 129, 394-402.	20.2	43
110	Polyallylamine Functionalized Palladium Icosahedra: One-Pot Water-Based Synthesis and Their Superior Electrocatalytic Activity and Ethanol Tolerant Ability in Alkaline Media. Langmuir, 2013, 29, 4413-4420.	3.5	69
111	Fabrication of phosphonate functionalized platinum nanoclusters and their application in hydrogen peroxide sensing in the presence of oxygen. Electrochimica Acta, 2012, 80, 233-239.	5.2	11
112	One-step synthesis and catalytic properties of porous palladium nanospheres. Journal of Materials Chemistry, 2012, 22, 17604.	6.7	50
113	One-pot synthesis of three-dimensional platinum nanochain networks as stable and active electrocatalysts for oxygen reduction reactions. Journal of Materials Chemistry, 2012, 22, 13585.	6.7	92
114	Preparation of highly dispersed palladium–phosphorus nanoparticles and its electrocatalytic performance for formic acid electrooxidation. Electrochimica Acta, 2012, 59, 279-283.	5.2	54