
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/73774/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of the thermoelectric figure ofÂmeritÂin the conducting polymer poly(3,4-ethylenedioxythiophene). Nature Materials, 2011, 10, 429-433.	13.3	1,518
2	Organic electrochemical transistors. Nature Reviews Materials, 2018, 3, .	23.3	1,143
3	The Origin of the High Conductivity of Poly(3,4-ethylenedioxythiophene)â^'Poly(styrenesulfonate) (PEDOTâ^'PSS) Plastic Electrodes. Chemistry of Materials, 2006, 18, 4354-4360.	3.2	828
4	Light-emitting diodes with variable colours from polymer blends. Nature, 1994, 372, 444-446.	13.7	749
5	Semi-metallic polymers. Nature Materials, 2014, 13, 190-194.	13.3	722
6	Organic materials for printed electronics. Nature Materials, 2007, 6, 3-5.	13.3	612
7	Organic Bioelectronics. Advanced Materials, 2007, 19, 3201-3213.	11.1	570
8	Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chemical Reviews, 2016, 116, 13009-13041.	23.0	422
9	Active Matrix Displays Based on All-Organic Electrochemical Smart Pixels Printed on Paper. Advanced Materials, 2002, 14, 1460-1464.	11.1	356
10	Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nature Materials, 2007, 6, 673-679.	13.3	352
11	Printable Allâ€Organic Electrochromic Activeâ€Matrix Displays. Advanced Functional Materials, 2007, 17, 3074-3082.	7.8	335
12	Light amplification in organic thin films using cascade energy transfer. Nature, 1997, 389, 466-469.	13.7	334
13	Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. Nature Materials, 2009, 8, 742-746.	13.3	314
14	Ionic thermoelectric supercapacitors. Energy and Environmental Science, 2016, 9, 1450-1457.	15.6	312
15	Micrometer- and Nanometer-Sized Polymeric Light-Emitting Diodes. Science, 1995, 267, 1479-1481.	6.0	309
16	Electroluminescence from Substituted Poly(thiophenes): From Blue to Near-Infrared. Macromolecules, 1995, 28, 7525-7529.	2.2	289
17	Understanding the Capacitance of PEDOT:PSS. Advanced Functional Materials, 2017, 27, 1700329.	7.8	275
18	Tuning the Thermoelectric Properties of Conducting Polymers in an Electrochemical Transistor. Journal of the American Chemical Society, 2012, 134, 16456-16459.	6.6	269

#	Article	IF	CITATIONS
19	A Waterâ€Gate Organic Fieldâ€Effect Transistor. Advanced Materials, 2010, 22, 2565-2569.	11.1	265
20	Electrocardiographic Recording with Conformable Organic Electrochemical Transistor Fabricated on Resorbable Bioscaffold. Advanced Materials, 2014, 26, 3874-3878.	11.1	252
21	Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Analytical and Bioanalytical Chemistry, 2012, 402, 1813-1826.	1.9	247
22	Thermoelectric Properties of Solutionâ€Processed nâ€Doped Ladderâ€Type Conducting Polymers. Advanced Materials, 2016, 28, 10764-10771.	11.1	245
23	Polarized electroluminescence from an oriented substituted polythiophene in a light emitting diode. Advanced Materials, 1995, 7, 43-45.	11.1	243
24	Interfaces in organic electronics. Nature Reviews Materials, 2019, 4, 627-650.	23.3	237
25	Low-Voltage Polymer Field-Effect Transistors Gated via a Proton Conductor. Advanced Materials, 2007, 19, 97-101.	11.1	221
26	Polarons, Bipolarons, And Absorption Spectroscopy of PEDOT. ACS Applied Polymer Materials, 2019, 1, 83-94.	2.0	217
27	Regioselective polymerization of 3-(4-octylphenyl)thiophene with FeCl3. Macromolecules, 1994, 27, 6503-6506.	2.2	209
28	An all-organic sensor–transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper. Sensors and Actuators B: Chemical, 2002, 86, 193-197.	4.0	208
29	Complementary Logic Circuits Based on Highâ€Performance nâ€īype Organic Electrochemical Transistors. Advanced Materials, 2018, 30, 1704916.	11.1	206
30	Thermoelectric properties of conducting polymers: The case of poly(3-hexylthiophene). Physical Review B, 2010, 82, .	1.1	196
31	Electronic plants. Science Advances, 2015, 1, e1501136.	4.7	190
32	Effect of (3â€glycidyloxypropyl)trimethoxysilane (GOPS) on the electrical properties of PEDOT:PSS films. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 814-820.	2.4	190
33	An Organic Mixed Ion–Electron Conductor for Power Electronics. Advanced Science, 2016, 3, 1500305.	5.6	188
34	Electrochemical Logic Circuits. Advanced Materials, 2005, 17, 353-358.	11.1	183
35	Insulator Polarization Mechanisms in Polyelectrolyteâ€Gated Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2009, 19, 3334-3341.	7.8	181
36	Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability. Advanced Materials, 2020, 32, e2002748.	11.1	181

#	Article	IF	CITATIONS
37	Ionic Seebeck Effect in Conducting Polymers. Advanced Energy Materials, 2015, 5, 1500044.	10.2	178
38	Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10599-10604.	3.3	175
39	Stimulated emission and lasing in dye-doped organic thin films with Forster transfer. Applied Physics Letters, 1997, 71, 2230-2232.	1.5	174
40	Electrolyte-gated transistors for enhanced performance bioelectronics. Nature Reviews Methods Primers, 2021, 1, .	11.8	172
41	Case Report Complete Transection of the Median and Radial Nerves During Arthroscopic Release of Post-traumatic Elbow Contracture. Arthroscopy - Journal of Arthroscopic and Related Surgery, 1999, 15, 784-787.	1.3	170
42	A Chemically Doped Naphthalenediimideâ€Bithiazole Polymer for nâ€Type Organic Thermoelectrics. Advanced Materials, 2018, 30, e1801898.	11.1	165
43	Therapy using implanted organic bioelectronics. Science Advances, 2015, 1, e1500039.	4.7	161
44	Fiberâ€Embedded Electrolyteâ€Gated Fieldâ€Effect Transistors for eâ€Textiles. Advanced Materials, 2009, 21, 573-577.	11.1	157
45	Logic gates based on ion transistors. Nature Communications, 2012, 3, 871.	5.8	157
46	Thermoelectric Polymers and their Elastic Aerogels. Advanced Materials, 2016, 28, 4556-4562.	11.1	157
47	Conductivity-type anisotropy in molecular solids. Journal of Applied Physics, 1997, 81, 6804-6808.	1.1	156
48	All-printed large-scale integrated circuits based on organic electrochemical transistors. Nature Communications, 2019, 10, 5053.	5.8	156
49	Ionic Thermoelectric Figure of Merit for Charging of Supercapacitors. Advanced Electronic Materials, 2017, 3, 1700013.	2.6	146
50	Detection of Glutamate and Acetylcholine with Organic Electrochemical Transistors Based on Conducting Polymer/Platinum Nanoparticle Composites. Advanced Materials, 2014, 26, 5658-5664.	11.1	142
51	Organic solid-state lasers with imprinted gratings on plastic substrates. Applied Physics Letters, 1998, 72, 410-411.	1.5	141
52	A Solid-State Organic Electronic Wettability Switch. Advanced Materials, 2004, 16, 316-320.	11.1	141
53	Improving the contrast of all-printed electrochromic polymer on paper displays. Journal of Materials Chemistry, 2009, 19, 1799.	6.7	140
54	Downscaling of Organic Fieldâ€Effect Transistors with a Polyelectrolyte Gate Insulator. Advanced Materials, 2008, 20, 4708-4713.	11.1	138

#	Article	IF	CITATIONS
55	Controlling Epileptiform Activity with Organic Electronic Ion Pumps. Advanced Materials, 2015, 27, 3138-3144.	11.1	138
56	An Evolvable Organic Electrochemical Transistor for Neuromorphic Applications. Advanced Science, 2019, 6, 1801339.	5.6	138
57	How conducting polymer electrodes operate. Science, 2019, 364, 233-234.	6.0	133
58	White light from an electroluminescent diode made from poly[3(4â€octylphenyl)â€2,2'â€bithiophene] and ar oxadiazole derivative. Journal of Applied Physics, 1994, 76, 7530-7534.	¹ 1.1	129
59	Controlling the dimensionality of charge transport in organic thin-film transistors. Proceedings of the United States of America, 2011, 108, 15069-15073.	3.3	128
60	The effect of pH on the electrochemical over-oxidation in PEDOT:PSS films. Solid State Ionics, 2007, 177, 3521-3527.	1.3	127
61	DNA detection with a water-gated organic field-effect transistor. Organic Electronics, 2012, 13, 1-6.	1.4	127
62	Ion bipolar junction transistors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9929-9932.	3.3	125
63	n-Type organic electrochemical transistors: materials and challenges. Journal of Materials Chemistry C, 2018, 6, 11778-11784.	2.7	122
64	Electrochemical modulation of epithelia formation using conducting polymers. Biomaterials, 2009, 30, 6257-6264.	5.7	121
65	A high-conductivity n-type polymeric ink for printed electronics. Nature Communications, 2021, 12, 2354.	5.8	120
66	Improving the color switch contrast in PEDOT:PSS-based electrochromic displays. Organic Electronics, 2012, 13, 469-474.	1.4	119
67	Ion Electron–Coupled Functionality in Materials and Devices Based on Conjugated Polymers. Advanced Materials, 2019, 31, e1805813.	11.1	118
68	A Multiparameter Pressure–Temperature–Humidity Sensor Based on Mixed Ionic–Electronic Cellulose Aerogels. Advanced Science, 2019, 6, 1802128.	5.6	114
69	Organic bioelectronics in nanomedicine. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 276-285.	1.1	112
70	Chemical potential–electric double layer coupling in conjugated polymer–polyelectrolyte blends. Science Advances, 2017, 3, eaao3659.	4.7	112
71	Thiophene polymers in light emitting diodes: Making multicolour devices. Synthetic Metals, 1995, 71, 2121-2124.	2.1	111
72	Ground-state electron transfer in all-polymer donor–acceptor heterojunctions. Nature Materials, 2020, 19, 738-744.	13.3	111

#	Article	IF	CITATIONS
73	Translating Electronic Currents to Precise Acetylcholine–Induced Neuronal Signaling Using an Organic Electrophoretic Delivery Device. Advanced Materials, 2009, 21, 4442-4446.	11.1	110
74	Nano-fiber scaffold electrodes based on PEDOT for cell stimulation. Sensors and Actuators B: Chemical, 2009, 142, 451-456.	4.0	110
75	Organic electrochemical neurons and synapses with ion mediated spiking. Nature Communications, 2022, 13, 901.	5.8	110
76	Electronic Control of Cell Detachment Using a Selfâ€Đoped Conducting Polymer. Advanced Materials, 2011, 23, 4403-4408.	11.1	107
77	Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9440-9445.	3.3	107
78	A Decade of Iontronic Delivery Devices. Advanced Materials Technologies, 2018, 3, 1700360.	3.0	106
79	A polythiophene microcavity laser. Chemical Physics Letters, 1998, 288, 879-884.	1.2	105
80	Poly(ethylene imine) Impurities Induce nâ€doping Reaction in Organic (Semi)Conductors. Advanced Materials, 2014, 26, 6000-6006.	11.1	101
81	Mechanical stimulation of epithelial cells using polypyrrole microactuators. Lab on A Chip, 2011, 11, 3287.	3.1	100
82	Polymer diodes with high rectification. Applied Physics Letters, 1999, 75, 3557-3559.	1.5	99
83	Ionic thermoelectric gating organic transistors. Nature Communications, 2017, 8, 14214.	5.8	99
84	Polymer field-effect transistor gated via a poly(styrenesulfonic acid) thin film. Applied Physics Letters, 2006, 89, 143507.	1.5	97
85	Oxygen-induced doping on reduced PEDOT. Journal of Materials Chemistry A, 2017, 5, 4404-4412.	5.2	97
86	Thermoelectric Properties of Polymeric Mixed Conductors. Advanced Functional Materials, 2016, 26, 6288-6296.	7.8	96
87	Tuning the threshold voltage in electrolyte-gated organic field-effect transistors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8394-8399.	3.3	94
88	Infrared electrochromic conducting polymer devices. Journal of Materials Chemistry C, 2017, 5, 5824-5830.	2.7	94
89	An all-polymer-air PEDOT battery. Organic Electronics, 2012, 13, 632-637.	1.4	89
90	Single Crystalâ€Like Performance in Solutionâ€Coated Thinâ€Film Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2016, 26, 2379-2386.	7.8	87

#	Article	IF	CITATIONS
91	Control of Neural Stem Cell Adhesion and Density by an Electronic Polymer Surface Switch. Langmuir, 2008, 24, 14133-14138.	1.6	86
92	Influence of Molecular Weight on the Organic Electrochemical Transistor Performance of Ladderâ€Type Conjugated Polymers. Advanced Materials, 2022, 34, e2106235.	11.1	86
93	Controlling colour by voltage in polymer light emitting diodes. Synthetic Metals, 1995, 71, 2185-2186.	2.1	85
94	Active Control of Epithelial Cellâ€Density Gradients Grown Along the Channel of an Organic Electrochemical Transistor. Advanced Materials, 2009, 21, 4379-4382.	11.1	85
95	Polyelectrolyteâ€Gated Organic Complementary Circuits Operating at Low Power and Voltage. Advanced Materials, 2011, 23, 4684-4689.	11.1	85
96	1 micron wavelength photo- and electroluminescence from a conjugated polymer. Applied Physics Letters, 2004, 84, 3570-3572.	1.5	84
97	In vivo polymerization and manufacturing of wires and supercapacitors in plants. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2807-2812.	3.3	84
98	Effect of the Ionic Conductivity on the Performance of Polyelectrolyteâ€Based Supercapacitors. Advanced Functional Materials, 2010, 20, 4344-4350.	7.8	83
99	Toward Complementary Ionic Circuits: The <i>npn</i> Ion Bipolar Junction Transistor. Journal of the American Chemical Society, 2011, 133, 10141-10145.	6.6	83
100	Transparent, Plastic, Low-Work-Function Poly(3,4-ethylenedioxythiophene) Electrodes. Chemistry of Materials, 2006, 18, 4246-4252.	3.2	82
101	Optoelectronic control of single cells using organic photocapacitors. Science Advances, 2019, 5, eaav5265.	4.7	82
102	Printed passive matrix addressed electrochromic displays. Organic Electronics, 2013, 14, 3371-3378.	1.4	81
103	Ionic thermoelectric paper. Journal of Materials Chemistry A, 2017, 5, 16883-16888.	5.2	79
104	Lowâ€Voltage Ring Oscillators Based on Polyelectrolyteâ€Gated Polymer Thinâ€Film Transistors. Advanced Materials, 2010, 22, 72-76.	11.1	78
105	Transition between energy level alignment regimes at a low band gap polymer-electrode interfaces. Applied Physics Letters, 2006, 89, 213503.	1.5	77
106	Ultraviolet electroluminescence from an organic light emitting diode. Advanced Materials, 1995, 7, 900-903.	11.1	76
107	Green Electroluminescence in Poly-(3-cyclohexylthiophene) light-emitting diodes. Advanced Materials, 1994, 6, 488-490.	11.1	75
108	Fast-switching all-printed organic electrochemical transistors. Organic Electronics, 2013, 14, 1276-1280.	1.4	75

#	Article	IF	CITATIONS
109	Boosting the capacity of all-organic paper supercapacitors using wood derivatives. Journal of Materials Chemistry A, 2018, 6, 145-152.	5.2	74
110	Correlating the Seebeck coefficient of thermoelectric polymer thin films to their charge transport mechanism. Organic Electronics, 2018, 52, 335-341.	1.4	73
111	Polymeric light-emitting diodes of submicron size — structures and developments. Synthetic Metals, 1996, 76, 141-143.	2.1	71
112	Thermal control of nearâ€infrared and visible electroluminescence in alkylâ€phenyl substituted polythiophenes. Applied Physics Letters, 1994, 65, 1489-1491.	1.5	70
113	Control of Neural Stem Cell Survival by Electroactive Polymer Substrates. PLoS ONE, 2011, 6, e18624.	1.1	70
114	PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics. Scientific Reports, 2018, 8, 15293.	1.6	69
115	Electrocatalytic Production of Hydrogen Peroxide with Poly(3,4â€ethylenedioxythiophene) Electrodes. Advanced Sustainable Systems, 2019, 3, 1800110.	2.7	69
116	Solid-state droplet laser made from an organic blend with a conjugated polymer emitter. Advanced Materials, 1997, 9, 968-971.	11.1	68
117	All-printed diode operating at 1.6 GHz. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11943-11948.	3.3	68
118	Flexible active matrix addressed displays manufactured by printing and coating techniques. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 265-271.	2.4	63
119	Naphthalenediimide Polymers with Finely Tuned Inâ€Chain Ï€â€Conjugation: Electronic Structure, Film Microstructure, and Charge Transport Properties. Advanced Materials, 2016, 28, 9169-9174.	11.1	63
120	EGOFET Peptide Aptasensor for Labelâ€Free Detection of Inflammatory Cytokines in Complex Fluids. Advanced Biology, 2018, 2, 1700072.	3.0	63
121	Electric current rectification by an all-organic electrochemical device. Applied Physics Letters, 2002, 81, 2011-2013.	1.5	61
122	On the Current Saturation Observed in Electrochemical Polymer Transistors. Journal of the Electrochemical Society, 2006, 153, H39.	1.3	61
123	Chemical delivery array with millisecond neurotransmitter release. Science Advances, 2016, 2, e1601340.	4.7	61
124	APPLIED PHYSICS: Organic Solid-State Lasers: Past and Future. Science, 1997, 277, 1787-1788.	6.0	60
125	Chronic electrical stimulation of peripheral nerves via deep-red light transduced by an implanted organic photocapacitor. Nature Biomedical Engineering, 2022, 6, 741-753.	11.6	59
126	Resonators and materials for organic lasers based on energy transfer. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4, 67-74.	1.9	58

#	Article	IF	CITATIONS
127	Biorecognition in Organic Field Effect Transistors Biosensors: The Role of the Density of States of the Organic Semiconductor. Analytical Chemistry, 2016, 88, 12330-12338.	3.2	58
128	Realâ€Time Monitoring of Glucose Export from Isolated Chloroplasts Using an Organic Electrochemical Transistor. Advanced Materials Technologies, 2020, 5, 1900262.	3.0	58
129	An all-printed wireless humidity sensor label. Sensors and Actuators B: Chemical, 2012, 166-167, 556-561.	4.0	57
130	Diurnal inÂvivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors. IScience, 2021, 24, 101966.	1.9	57
131	Doping front propagation in light-emitting electrochemical cells. Physical Review B, 2006, 74, .	1.1	56
132	Electrochemical Control of Growth Factor Presentation To Steer Neural Stem Cell Differentiation. Angewandte Chemie - International Edition, 2011, 50, 12529-12533.	7.2	56
133	Ion diode logics for pH control. Lab on A Chip, 2012, 12, 2507.	3.1	55
134	<i>In Vivo</i> Organic Bioelectronics for Neuromodulation. Chemical Reviews, 2022, 122, 4826-4846.	23.0	55
135	High carrier mobility in low band gap polymer-based field-effect transistors. Applied Physics Letters, 2005, 87, 252105.	1.5	54
136	Phospholipid film in electrolyte-gated organic field-effect transistors. Organic Electronics, 2012, 13, 638-644.	1.4	54
137	Effects of the Ionic Currents in Electrolyteâ€gated Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2008, 18, 3529-3536.	7.8	53
138	Freestanding electrochromic paper. Journal of Materials Chemistry C, 2016, 4, 9680-9686.	2.7	53
139	Controlling the Dimensionality of Charge Transport in an Organic Electrochemical Transistor by Capacitive Coupling. Advanced Materials, 2011, 23, 4764-4769.	11.1	52
140	Ferroelectric Polarization Induces Electric Double Layer Bistability in Electrolyte-Gated Field-Effect Transistors. ACS Applied Materials & Interfaces, 2014, 6, 438-442.	4.0	52
141	On the mode of operation in electrolyte-gated thin film transistors based on different substituted polythiophenes. Organic Electronics, 2014, 15, 2420-2427.	1.4	52
142	High yield manufacturing of fully screen-printed organic electrochemical transistors. Npj Flexible Electronics, 2020, 4, .	5.1	52
143	Regulating plant physiology with organic electronics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4597-4602.	3.3	51
144	Effect of Gate Electrode Workâ€Function on Source Charge Injection in Electrolyteâ€Gated Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2014, 24, 695-700.	7.8	50

MAGNUS BERGGREN

#	Article	IF	CITATIONS
145	Flexible Printed Organic Electrochemical Transistors for the Detection of Uric Acid in Artificial Wound Exudate. Advanced Materials Interfaces, 2020, 7, 2001218.	1.9	50
146	Spray-coated paper supercapacitors. Npj Flexible Electronics, 2020, 4, .	5.1	50
147	Synthesis of poly(alkylthiophenes) for light-emitting diodes. Synthetic Metals, 1995, 71, 2183-2184.	2.1	49
148	Towards all-plastic flexible light emitting diodes. Chemical Physics Letters, 2006, 433, 110-114.	1.2	49
149	Low band gap donor–acceptor–donor polymers for infra-red electroluminescence and transistors. Synthetic Metals, 2004, 146, 233-236.	2.1	48
150	Switchable Charge Traps in Polymer Diodes. Advanced Materials, 2005, 17, 1798-1803.	11.1	48
151	The intrinsic volumetric capacitance of conducting polymers: pseudo-capacitors or double-layer supercapacitors?. RSC Advances, 2019, 9, 42498-42508.	1.7	48
152	Electrochemical control of surface wettability of poly(3-alkylthiophenes). Surface Science, 2006, 600, L148-L152.	0.8	47
153	Ferroelectric polarization induces electronic nonlinearity in ion-doped conducting polymers. Science Advances, 2017, 3, e1700345.	4.7	46
154	Reversible Electronic Solid–Gel Switching of a Conjugated Polymer. Advanced Science, 2020, 7, 1901144.	5.6	45
155	Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling. Journal of Materials Chemistry C, 2020, 8, 11687-11694.	2.7	45
156	Patterning polythiophene films using electrochemical over-oxidation. Smart Materials and Structures, 2005, 14, N21-N25.	1.8	44
157	Tuning the Energy Levels of Photochromic Diarylethene Compounds for Opto-Electronic Switch Devices. Journal of Physical Chemistry C, 2009, 113, 18396-18405.	1.5	44
158	A Fourâ€Diode Fullâ€Wave Ionic Current Rectifier Based on Bipolar Membranes: Overcoming the Limit of Electrode Capacity. Advanced Materials, 2014, 26, 5143-5147.	11.1	44
159	An organic electronic biomimetic neuron enables auto-regulated neuromodulation. Biosensors and Bioelectronics, 2015, 71, 359-364.	5.3	44
160	Controlling inter-chain and intra-chain excitations of a poly(thiophene) derivative in thin films. Chemical Physics Letters, 1999, 304, 84-90.	1.2	43
161	Label free urea biosensor based on organic electrochemical transistors. Flexible and Printed Electronics, 2018, 3, 024001.	1.5	43
162	Reflective and transparent cellulose-based passive radiative coolers. Cellulose, 2021, 28, 9383-9393.	2.4	42

#	Article	IF	CITATIONS
163	Copolythiophene-based water-gated organic field-effect transistors for biosensing. Journal of Materials Chemistry B, 2013, 1, 2090.	2.9	41
164	Sequential Doping of Ladder-Type Conjugated Polymers for Thermally Stable n-Type Organic Conductors. ACS Applied Materials & amp; Interfaces, 2020, 12, 53003-53011.	4.0	41
165	Controlling the Organization of PEDOT:PSS on Cellulose Structures. ACS Applied Polymer Materials, 2019, 1, 2342-2351.	2.0	40
166	Improved photoluminescence efficiency of films from conjugated polymers. Synthetic Metals, 1997, 85, 1383-1384.	2.1	39
167	Electronic modulation of an electrochemically induced wettability gradient to control water movement on a polyaniline surface. Thin Solid Films, 2006, 515, 2003-2008.	0.8	39
168	Development and Characterization of Organic Electronic Scaffolds for Bone Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 1505-1512.	3.9	39
169	Lowâ€Power/Highâ€Gain Flexible Complementary Circuits Based on Printed Organic Electrochemical Transistors. Advanced Electronic Materials, 2022, 8, .	2.6	39
170	Spatial Control of p–n Junction in an Organic Light-Emitting Electrochemical Transistor. Journal of the American Chemical Society, 2012, 134, 901-904.	6.6	38
171	Energy Level Bending in Ultrathin Polymer Layers Obtained through Langmuir–ShÃter Deposition. Advanced Functional Materials, 2016, 26, 1077-1084.	7.8	38
172	Nanofibrillated Celluloseâ€Based Electrolyte and Electrode for Paperâ€Based Supercapacitors. Advanced Sustainable Systems, 2018, 2, 1700121.	2.7	38
173	Screen printed digital circuits based on vertical organic electrochemical transistors. Flexible and Printed Electronics, 2017, 2, 045008.	1.5	37
174	Flexible wireless powered drug delivery system for targeted administration on cerebral cortex. Nano Energy, 2018, 51, 102-112.	8.2	37
175	On the switching mechanism in Rose Bengal-based memory devices. Organic Electronics, 2007, 8, 559-565.	1.4	36
176	Dynamic Control of Surface Energy and Topography of Microstructured Conducting Polymer Films. Langmuir, 2008, 24, 5942-5948.	1.6	36
177	Controlling the electrochromic properties of conductive polymers using UV-light. Journal of Materials Chemistry C, 2018, 6, 4663-4670.	2.7	36
178	Controlling Electrochemically Induced Volume Changes in Conjugated Polymers by Chemical Design: from Theory to Devices. Advanced Functional Materials, 2021, 31, 2100723.	7.8	35
179	Selective Remanent Ambipolar Charge Transport in Polymeric Fieldâ€Effect Transistors For Highâ€Performance Logic Circuits Fabricated in Ambient. Advanced Materials, 2014, 26, 7438-7443.	11.1	34
180	Organic electrochemical transistors for signal amplification in fast scan cyclic voltammetry. Sensors and Actuators B: Chemical, 2014, 195, 651-656.	4.0	34

#	Article	IF	CITATIONS
181	Capillary-Fiber Based Electrophoretic Delivery Device. ACS Applied Materials & Interfaces, 2019, 11, 14200-14207.	4.0	34
182	Organic Microbial Electrochemical Transistor Monitoring Extracellular Electron Transfer. Advanced Science, 2020, 7, 2000641.	5.6	34
183	Tunable Structural Color Images by UVâ€Patterned Conducting Polymer Nanofilms on Metal Surfaces. Advanced Materials, 2021, 33, e2102451.	11.1	34
184	Implantable Organic Electronic Ion Pump Enables ABA Hormone Delivery for Control of Stomata in an Intact Tobacco Plant. Small, 2019, 15, e1902189.	5.2	33
185	Self organizing polymer films—a route to novel electronic devices based on conjugated polymers. Supramolecular Science, 1997, 4, 27-34.	0.7	32
186	Highâ€Performance Hole Transport and Quasiâ€Balanced Ambipolar OFETs Based on D–A–A Thienoâ€benzoâ€isoindigo Polymers. Advanced Electronic Materials, 2016, 2, 1500313.	2.6	32
187	Impact of Singly Occupied Molecular Orbital Energy on the n-Doping Efficiency of Benzimidazole Derivatives. ACS Applied Materials & Interfaces, 2019, 11, 37981-37990.	4.0	32
188	Optical emission from confined poly(thiophene) chains. Optical Materials, 1998, 9, 104-108.	1.7	31
189	Electronically controlled pH gradients and proton oscillations. Organic Electronics, 2008, 9, 303-309.	1.4	31
190	Modulating molecular aggregation by facile heteroatom substitution of diketopyrrolopyrrole based small molecules for efficient organic solar cells. Journal of Materials Chemistry A, 2015, 3, 24349-24357.	5.2	31
191	Patterning and Conductivity Modulation of Conductive Polymers by UV Light Exposure. Advanced Functional Materials, 2016, 26, 6950-6960.	7.8	31
192	Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors. Npj Biofilms and Microbiomes, 2017, 3, 19.	2.9	31
193	Wireless organic electronic ion pumps driven by photovoltaics. Npj Flexible Electronics, 2019, 3, .	5.1	31
194	Evaluation of active materials designed for use in printable electrochromic polymer displays. Thin Solid Films, 2006, 515, 2485-2492.	0.8	30
195	A sensor circuit using reference-based conductance switching in organic electrochemical transistors. Applied Physics Letters, 2008, 93, .	1.5	30
196	Simplified Largeâ€Area Manufacturing of Organic Electrochemical Transistors Combining Printing and a Selfâ€Aligning Laser Ablation Step. Advanced Functional Materials, 2012, 22, 2939-2948.	7.8	30
197	Spectroelectrochemistry and Nature of Charge Carriers in Selfâ€Doped Conducting Polymer. Advanced Electronic Materials, 2017, 3, 1700096.	2.6	30
198	Polymer light-emitting diodes placed in microcavities. Synthetic Metals, 1996, 76, 121-123.	2.1	29

#	Article	IF	CITATIONS
199	A Static Model for Electrolyte-Gated Organic Field-Effect Transistors. IEEE Transactions on Electron Devices, 2011, 58, 3574-3582.	1.6	29
200	Organic lasers based on Förster transfer. Synthetic Metals, 1997, 91, 65-68.	2.1	28
201	Modulating Inflammation in Monocytes Using Capillary Fiber Organic Electronic Ion Pumps. Advanced Healthcare Materials, 2019, 8, e1900813.	3.9	28
202	Negativelyâ€Doped Conducting Polymers for Oxygen Reduction Reaction. Advanced Energy Materials, 2021, 11, 2002664.	10.2	28
203	Polyphosphonium-based bipolar membranes for rectification of ionic currents. Biomicrofluidics, 2013, 7, 64117.	1.2	26
204	Overcoming transport limitations in miniaturized electrophoretic delivery devices. Lab on A Chip, 2019, 19, 1427-1435.	3.1	26
205	A Biomimetic Evolvable Organic Electrochemical Transistor. Advanced Electronic Materials, 2021, 7, 2001126.	2.6	26
206	Towards addressable organic impedance switch devices. Applied Physics Letters, 2005, 87, 063503.	1.5	25
207	Electrochemical wettability switches gate aqueous liquids in microfluidic systems. Lab on A Chip, 2006, 6, 1277.	3.1	25
208	Ultra-low voltage air-stable polyelectrolyte gated n-type organic thin film transistors. Applied Physics Letters, 2011, 99, .	1.5	25
209	Reconfigurable sticker label electronics manufactured from nanofibrillated cellulose-based self-adhesive organic electronic materials. Organic Electronics, 2013, 14, 3061-3069.	1.4	25
210	Fast-Switching Printed Organic Electrochemical Transistors Including Electronic Vias Through Plastic and Paper Substrates. IEEE Transactions on Electron Devices, 2013, 60, 2052-2056.	1.6	25
211	One-Step Synthesis of Precursor Oligomers for Organic Photovoltaics: A Comparative Study between Polymers and Small Molecules. ACS Applied Materials & Interfaces, 2015, 7, 27106-27114.	4.0	25
212	Understanding the characteristics of conducting polymer-redox biopolymer supercapacitors. Journal of Materials Chemistry A, 2019, 7, 23973-23980.	5.2	25
213	Characterization of the interface dipole at the paraphenylenediamine-nickel interface: A joint theoretical and experimental study. Journal of Chemical Physics, 2005, 122, 084712.	1.2	24
214	Bias stress effect in polyelectrolyte-gated organic field-effect transistors. Applied Physics Letters, 2013, 102, 113306.	1.5	24
215	Electrochemical hydrogen production on a metal-free polymer. Sustainable Energy and Fuels, 2019, 3, 3387-3398.	2.5	24
216	An Ionic Capacitor for Integrated Iontronic Circuits. Advanced Materials Technologies, 2019, 4, 1800494.	3.0	24

#	Article	IF	CITATIONS
217	Phase separation of conjugated polymers — tools for new functions in polymer leds. Synthetic Metals, 1997, 85, 1193-1194.	2.1	23
218	Vertical polyelectrolyte-gated organic field-effect transistors. Applied Physics Letters, 2010, 97, .	1.5	23
219	Double-Gate Light-Emitting Electrochemical Transistor: Confining the Organic p–n Junction. Journal of the American Chemical Society, 2013, 135, 12224-12227.	6.6	23
220	Cross-Linked Polyelectrolyte for Improved Selectivity and Processability of Iontronic Systems. ACS Applied Materials & amp; Interfaces, 2017, 9, 30247-30252.	4.0	23
221	Improving the Performance of Paper Supercapacitors Using Redox Molecules from Plants. Advanced Sustainable Systems, 2019, 3, 1900050.	2.7	23
222	Electronic Structures and Optical Absorption of N-Type Conducting Polymers at Different Doping Levels. Journal of Physical Chemistry C, 2019, 123, 15467-15476.	1.5	23
223	Greyscale and Paper Electrochromic Polymer Displays by UV Patterning. Polymers, 2019, 11, 267.	2.0	23
224	Enzyme-assisted <i>in vivo</i> polymerisation of conjugated oligomer based conductors. Journal of Materials Chemistry B, 2020, 8, 4221-4227.	2.9	23
225	Synthesis and Electronic Properties of Diketopyrrolopyrrole-Based Polymers with and without Ring-Fusion. Macromolecules, 2021, 54, 970-980.	2.2	23
226	Transcranial Electrical Stimulation and Recording of Brain Activity using Freestanding Plantâ€Based Conducting Polymer Hydrogel Composites. Advanced Materials Technologies, 2020, 5, 1900652.	3.0	22
227	Monolithic integration of display driver circuits and displays manufactured by screen printing. Flexible and Printed Electronics, 2020, 5, 024001.	1.5	22
228	An electronic proton-trapping ion pump for selective drug delivery. Science Advances, 2021, 7, .	4.7	22
229	pH Dependence of γ-Aminobutyric Acid Iontronic Transport. Journal of Physical Chemistry B, 2017, 121, 7284-7289.	1.2	21
230	Supercapacitors on demand: all-printed energy storage devices with adaptable design. Flexible and Printed Electronics, 2019, 4, 015006.	1.5	21
231	Ionâ€Selective Electrocatalysis on Conducting Polymer Electrodes: Improving the Performance of Redox Flow Batteries. Advanced Functional Materials, 2020, 30, 2007009.	7.8	21
232	Modelling of heterogeneous ion transport in conducting polymer supercapacitors. Journal of Materials Chemistry A, 2021, 9, 2184-2194.	5.2	21
233	Organic lasers based on lithographically defined photonic-bandgap resonators. Electronics Letters, 1998, 34, 90.	0.5	19
234	Diodes based on blends of molecular switches and conjugated polymers. Synthetic Metals, 2005, 150, 217-221.	2.1	19

#	Article	IF	CITATIONS
235	Electronic Control over Detachment of a Self-Doped Water-Soluble Conjugated Polyelectrolyte. Langmuir, 2014, 30, 6257-6266.	1.6	19
236	Morphology of a self-doped conducting oligomer for green energy applications. Nanoscale, 2017, 9, 13717-13724.	2.8	19
237	Thiophene-Based Trimers for In Vivo Electronic Functionalization of Tissues. ACS Applied Electronic Materials, 2020, 2, 4065-4071.	2.0	19
238	Electrochromic display cells driven by an electrolyte-gated organic field-effect transistor. Organic Electronics, 2009, 10, 1195-1199.	1.4	18
239	Modeling of Charge Transport in Ion Bipolar Junction Transistors. Langmuir, 2014, 30, 6999-7005.	1.6	18
240	An Electrochromic Bipolar Membrane Diode. Advanced Materials, 2015, 27, 3909-3914.	11.1	18
241	Electrochemical circuits from â€ [~] cut and stick' PEDOT:PSS-nanocellulose composite. Flexible and Printed Electronics, 2017, 2, 045010.	1.5	18
242	On the Origin of Seebeck Coefficient Inversion in Highly Doped Conducting Polymers. Advanced Functional Materials, 2022, 32, .	7.8	18
243	The electronic structure of neutral and alkali metal-doped poly[3-(4-octylphenyl)thiophene] studied by photoelectron spectroscopy. Synthetic Metals, 1996, 80, 59-66.	2.1	17
244	Intrinsic and extrinsic influences on the temperature dependence of mobility in conjugated polymers. Organic Electronics, 2008, 9, 569-574.	1.4	17
245	PEDOT:PSS-Based Electrochemical Transistors for Ion-to-Electron Transduction and Sensor Signal Amplification. , 2008, , 263-280.		17
246	Fluorescence light emission at 1eV from a conjugated polymer. Chemical Physics Letters, 2010, 489, 92-95.	1.2	17
247	Browsing the Real World using Organic Electronics, Si hips, and a Human Touch. Advanced Materials, 2016, 28, 1911-1916.	11.1	17
248	Twinning Lignosulfonate with a Conducting Polymer via Counterâ€lon Exchange for Largeâ€Scale Electrical Storage. Advanced Sustainable Systems, 2019, 3, 1900039.	2.7	17
249	Large-area printed organic electronic ion pumps. Flexible and Printed Electronics, 2019, 4, 022001.	1.5	17
250	Miniaturized Ionic Polarization Diodes for Neurotransmitter Release at Synaptic Speeds. Advanced Materials Technologies, 2020, 5, 1900750.	3.0	17
251	Expanding the understanding of organic electrochemical transistor function. Applied Physics Letters, 2021, 118, .	1.5	16
252	The Role of Relative Capacitances in Impedance Sensing with Organic Electrochemical Transistors. Advanced Electronic Materials, 2021, 7, 2001173.	2.6	16

#	Article	IF	CITATIONS
253	Sensing Inflammation Biomarkers with Electrolyteâ€Gated Organic Electronic Transistors. Advanced Healthcare Materials, 2021, 10, e2100955.	3.9	16
254	Switchable optical polarizer based on electrochromism in stretch-aligned polyaniline. Applied Physics Letters, 2003, 83, 1307-1309.	1.5	15
255	Solution processed ZnO nanowires/polyfluorene heterojunctions for large area lightening. Chemical Physics Letters, 2010, 490, 200-204.	1.2	15
256	Polyphosphonium-based ion bipolar junction transistors. Biomicrofluidics, 2014, 8, 064116.	1.2	15
257	Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose. Scientific Reports, 2016, 6, 28921.	1.6	15
258	Hybrid Plasmonic and Pyroelectric Harvesting of Light Fluctuations. Advanced Optical Materials, 2018, 6, 1701051.	3.6	15
259	Effect of Sulfonation Level on Lignin/Carbon Composite Electrodes for Large-Scale Organic Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 17933-17944.	3.2	15
260	A digital nervous system aiming toward personalized IoT healthcare. Scientific Reports, 2021, 11, 7757.	1.6	15
261	Ultrathin Paper Microsupercapacitors for Electronic Skin Applications. Advanced Materials Technologies, 2022, 7, .	3.0	15
262	Amphiphilic Poly(3-hexylthiophene)-Based Semiconducting Copolymers for Printing of Polyelectrolyte-Gated Organic Field-Effect Transistors. Macromolecules, 2013, 46, 4548-4557.	2.2	14
263	Doped Conjugated Polymer Enclosing a Redox Polymer: Wiring Polyquinones with Poly(3,4â€Ethylenedioxythiophene). Advanced Energy and Sustainability Research, 2020, 1, 2000027.	2.8	14
264	Synergistic Effect of Multiâ€Walled Carbon Nanotubes and Ladderâ€Type Conjugated Polymers on the Performance of Nâ€Type Organic Electrochemical Transistors. Advanced Functional Materials, 2022, 32, 2106447.	7.8	14
265	Biohybrid plants with electronic roots <i>via in vivo</i> polymerization of conjugated oligomers. Materials Horizons, 2021, 8, 3295-3305.	6.4	14
266	Spatially Controlled Amyloid Reactions Using Organic Electronics. Small, 2010, 6, 2153-2161.	5.2	13
267	Picture-to-picture switching in full-color thermochromic paper displays. Applied Physics Letters, 2011, 99, 183303.	1.5	13
268	Solution processed liquid metal-conducting polymer hybrid thin films as electrochemical pH-threshold indicators. Journal of Materials Chemistry C, 2015, 3, 7604-7611.	2.7	13
269	Electrogeneration of Hydrogen Peroxide via Oxygen Reduction on Polyindole Films. Journal of the Electrochemical Society, 2020, 167, 086502.	1.3	13
270	Paper electronics and electronic paper. , 0, , .		12

#	Article	IF	CITATIONS
271	Matrix Addressing of an Electronic Surface Switch Based on a Conjugated Polyelectrolyte for Cell Sorting. Advanced Functional Materials, 2015, 25, 7056-7063.	7.8	12
272	Electric Transport Properties in PEDOT Thin Films. , 2019, , 45-128.		12
273	Amphiphilic semiconducting copolymer as compatibility layer for printing polyelectrolyte-gated OFETs. Organic Electronics, 2013, 14, 790-796.	1.4	11
274	Electronic control of platelet adhesion using conducting polymer microarrays. Lab on A Chip, 2014, 14, 3043.	3.1	11
275	Solar Heatâ€Enhanced Energy Conversion in Devices Based on Photosynthetic Membranes and PEDOT:PSSâ€Nanocellulose Electrodes. Advanced Sustainable Systems, 2020, 4, 1900100.	2.7	11
276	Designing Inverters Based on Screen Printed Organic Electrochemical Transistors Targeting Lowâ€Voltage and Highâ€Frequency Operation. Advanced Materials Technologies, 2021, 6, 2100555.	3.0	11
277	The effect of crosslinking on ion transport in nanocellulose-based membranes. Carbohydrate Polymers, 2022, 278, 118938.	5.1	11
278	Towards printable water-in-polymer salt electrolytes for high power organic batteries. Journal of Power Sources, 2022, 524, 231103.	4.0	11
279	Utilizing native lignin as redox-active material in conductive wood for electronic and energy storage applications. Journal of Materials Chemistry A, 2022, 10, 15677-15688.	5.2	11
280	Visualizing the Electric Field in Electrolytes Using Electrochromism from a Conjugated Polymer. Electrochemical and Solid-State Letters, 2005, 8, H12.	2.2	10
281	Proton motion in a polyelectrolyte: A probe for wireless humidity sensors. Sensors and Actuators B: Chemical, 2010, 143, 482-486.	4.0	10
282	Electroresponsive Nanoporous Membranes by Coating Anodized Alumina with Poly(3,4â€ethylenedioxythiophene) and Polypyrrole. Macromolecular Materials and Engineering, 2014, 299, 190-197.	1.7	10
283	Targeted Chemotherapy of Glioblastoma Spheroids with an Iontronic Pump. Advanced Materials Technologies, 2021, 6, 2001302.	3.0	10
284	Volumetric Double-Layer Charge Storage in Composites Based on Conducting Polymer PEDOT and Cellulose. ACS Applied Energy Materials, 2021, 4, 8629-8640.	2.5	10
285	Seamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers. Bioactive Materials, 2022, 10, 107-116.	8.6	10
286	Electronics turns over a new leaf. Physics World, 2001, 14, 21-22.	0.0	9
287	Formation of Monolithic Ion-Selective Transport Media Based on "Click―Cross-Linked Hyperbranched Polyglycerol. Frontiers in Chemistry, 2019, 7, 484.	1.8	9
288	Anisotropic conductivity of Cellulose-PEDOT:PSS composite materials studied with a generic 3D four-point probe tool. Organic Electronics, 2019, 66, 258-264.	1.4	9

MAGNUS BERGGREN

#	Article	IF	CITATIONS
289	Controlling pH by electronic ion pumps to fight fibrosis. Applied Materials Today, 2021, 22, 100936.	2.3	9
290	Nernst–Planck–Poisson analysis of electrolyte-gated organic field-effect transistors. Journal Physics D: Applied Physics, 2021, 54, 415101.	1.3	9
291	Lasing in substituted polythiophene between dielectric mirrors. Synthetic Metals, 1999, 102, 1038-1041.	2.1	8
292	An organic electronic ion pump to regulate intracellular signaling at high spatiotemporal resolution. , 2009, , .		8
293	Prediction of the current versus voltage behavior of devices based on organic semiconductor guest–host systems. Organic Electronics, 2009, 10, 95-106.	1.4	8
294	Printable organic electrochemical circuit to record time–temperature history. Electrochimica Acta, 2010, 55, 7061-7066.	2.6	8
295	Half-gate light-emitting electrochemical transistor to achieve centered emissive organic p–n junction. Organic Electronics, 2015, 18, 32-36.	1.4	8
296	Polarization of ferroelectric films through electrolyte. Journal of Physics Condensed Matter, 2016, 28, 105901.	0.7	8
297	Photoconductive zinc oxide-composite paper by pilot paper machine manufacturing. Flexible and Printed Electronics, 2016, 1, 044003.	1.5	8
298	Light-sensitive charge storage medium with spironaphthooxazine molecule-polymer blends for dual-functional organic phototransistor memory. Organic Electronics, 2020, 78, 105554.	1.4	8
299	Highly Conducting Nanographite-Filled Paper Fabricated via Standard Papermaking Techniques. ACS Applied Materials & Interfaces, 2020, 12, 48828-48835.	4.0	8
300	Biostack: Nontoxic Metabolite Detection from Live Tissue. Advanced Science, 2022, 9, e2101711.	5.6	8
301	Micropatterning of organic electronic materials using a facile aqueous photolithographic process. AIP Advances, 2018, 8, 105116.	0.6	7
302	Two-in-One Device with Versatile Compatible Electrical Switching or Data Storage Functions Controlled by the Ferroelectricity of P(VDF-TrFE) via Photocrosslinking. ACS Applied Materials & Interfaces, 2019, 11, 25358-25368.	4.0	7
303	Investigating the role of polymer size on ionic conductivity in free-standing hyperbranched polyelectrolyte membranes. Polymer, 2021, 223, 123664.	1.8	7
304	Autonomous Microcapillary Drug Delivery System Selfâ€Powered by a Flexible Energy Harvester. Advanced Materials Technologies, 2021, 6, 2100526.	3.0	7
305	The electronic and geometric structures of neutral and potassium-doped poly [3-(4-octylphenyl)thiophene] studied by photoelectron spectroscopy. Synthetic Metals, 1996, 76, 263-267.	2.1	6
306	Surface Acoustic Waves to Drive Plant Transpiration. Scientific Reports, 2017, 7, 45864.	1.6	6

3

#	Article	IF	CITATIONS
307	Electronic Structures and Optical Properties of p-Type/n-Type Polymer Blends: Density Functional Theory Study. Journal of Physical Chemistry C, 2020, 124, 9203-9214.	1.5	6
308	Design and Operation of Hybrid Microfluidic Iontronic Probes for Regulated Drug Delivery. Advanced Materials Technologies, 2021, 6, 2001006.	3.0	6
309	Formation of Supported Lipid Bilayers Derived from Vesicles of Various Compositional Complexity on Conducting Polymer/Silica Substrates. Langmuir, 2021, 37, 5494-5505.	1.6	6
310	Rational Materials Design for In Operando Electropolymerization of Evolvable Organic Electrochemical Transistors. Advanced Functional Materials, 2022, 32, .	7.8	6
311	Electroactive surfaces based on conducting polymers for controlling cell adhesion, signaling, and proliferation. , 2009, , .		5
312	Precise Neurotransmitter-Mediated Communication with Neurons In Vitro and In Vivo Using Organic Electronics. Journal of Biomechanical Science and Engineering, 2010, 5, 208-217.	0.1	5
313	Transient analysis of electrolyte-gated organic field-effect transistors. Proceedings of SPIE, 2012, , .	0.8	5
314	Low-voltage ambipolar polyelectrolyte-gated organic thin film transistors. Applied Physics Letters, 2012, 100, 183302.	1.5	5
315	Ferroelectric surfaces for cell release. Synthetic Metals, 2017, 228, 99-104.	2.1	5
316	Allâ€Solidâ€State Organic Schmitt Trigger Implemented by Twin Twoâ€inâ€One Ferroelectric Memory Transistors. Advanced Electronic Materials, 2020, 6, 1901263.	2.6	5
317	Tunable Structural Color Images by UVâ€Patterned Conducting Polymer Nanofilms on Metal Surfaces (Adv. Mater. 33/2021). Advanced Materials, 2021, 33, 2170261.	11.1	5
318	Method Matters: Exploring Alkoxysulfonate-Functionalized Poly(3,4-ethylenedioxythiophene) and Its Unintentional Self-Aggregating Copolymer toward Injectable Bioelectronics. Chemistry of Materials, 2022, 34, 2752-2763.	3.2	5
319	The electrochemical transistor and circuit design considerations. , 0, , .		4
320	Spatiotemporal Control of Amyloid-Like Aβ Plaque Formation Using a Multichannel Organic Electronic Device. Macromolecular Materials and Engineering, 2016, 301, 359-363.	1.7	4
321	A ferroelectric polymer introduces addressability in electrophoretic display cells. Flexible and Printed Electronics, 2019, 4, 035004.	1.5	4
322	Oxygen reduction reaction at conducting polymer electrodes in a wider context: Insights from modelling concerning outer and inner sphere mechanisms. Electrochemical Science Advances, 2023, 3, .	1.2	4
323	Organic Electrochemical Smart Pixels. Materials Research Society Symposia Proceedings, 2002, 736, 1.	0.1	3

Altering the structure of polypyrrole and the influence on electrodynamic performance., 2011,,.

#	Article	IF	CITATIONS
325	Electrochemical control of amplified spontaneous emission in conjugated polymers. Organic Electronics, 2012, 13, 954-958.	1.4	3
326	Iontronics: A Decade of Iontronic Delivery Devices (Adv. Mater. Technol. 5/2018). Advanced Materials Technologies, 2018, 3, 1870018.	3.0	3
327	Exploring Hydrogen Storage in PEDOT: A Computational Study. Journal of Physical Chemistry C, 2019, 123, 2066-2074.	1.5	3
328	PEDOT ellulose Gas Diffusion Electrodes for Disposable Fuel Cells. Advanced Sustainable Systems, 2019, 3, 1900097.	2.7	3
329	An Electroactive Filter with Tunable Porosity Based on Glycolated Polythiophene. Small Science, 2022, 2, .	5.8	3
330	Upscalable ultra thick rayon carbon felt based hybrid organicâ€inorganic electrodes for high energy density supercapacitors. Energy Storage, 0, , .	2.3	3
331	Organic Electrochemical Devices: Ion Electron–Coupled Functionality in Materials and Devices Based on Conjugated Polymers (Adv. Mater. 22/2019). Advanced Materials, 2019, 31, 1970160.	11.1	2
332	Manufacturing Poly(3,4â€Ethylenedioxythiophene) Electrocatalytic Sheets for Largeâ€Scale H 2 O 2 Production. Advanced Sustainable Systems, 0, , 2100316.	2.7	2
333	Grapheneâ€Enabled Electrophoretic Ion Pump Delivery Devices. Advanced Materials Interfaces, 2022, 9, .	1.9	2
334	Highâ€Gain Logic Inverters based on Multiple Screenâ€Printed Organic Electrochemical Transistors. Advanced Materials Technologies, 0, , 2101642.	3.0	2
335	All-organic electrochemical device with bistable and dynamic functionality. , 2003, , .		1
336	Electronic Textiles: Fiber-Embedded Electrolyte-Gated Field-Effect Transistors for e-Textiles (Adv.) Tj ETQq0 0 0 rg	BT /Overlo 11.1	ock ₁ 10 Tf 50 3
337	Remanent polarization in a cryptand-polyanion bilayer implemented in an organic field effect transistor. Applied Physics Letters, 2012, 100, 023305.	1.5	1
338	Organic Reprogrammable Circuits Based on Electrochemically Formed Diodes. ACS Applied Materials & Interfaces, 2014, 6, 13266-13270.	4.0	1
339	Implantable Bioelectronics: Implantable Organic Electronic Ion Pump Enables ABA Hormone Delivery for Control of Stomata in an Intact Tobacco Plant (Small 43/2019). Small, 2019, 15, 1970233.	5.2	1
340	Conjugated Polymers: Reversible Electronic Solid–Gel Switching of a Conjugated Polymer (Adv. Sci.) Tj ETQq0	0 0 rgBT /(Overlock 10 T
341	Soft iontronic delivery devices based on an intrinsically stretchable ion selective membrane. Flexible and Printed Electronics, 0, , .	1.5	1
342	The "Bottle Brush": A New Concept for Uncemented Anchorage of Bone Implants: Preliminary mechanical and biomechanical studies. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 1995, 29, 221-226.	0.6	0

#	Article	IF	CITATIONS
343	Polymer-based electrochemical devices for logic functions and paper displays. , 2003, , .		Ο
344	Blowin' in the Wind - a Source of Energy: Hybrid Plasmonic and Pyroelectric Harvesting of Light Fluctuations (Advanced Optical Materials 11/2018). Advanced Optical Materials, 2018, 6, 1870043.	3.6	0
345	Targeted Chemotherapy: Targeted Chemotherapy of Glioblastoma Spheroids with an Iontronic Pump (Adv. Mater. Technol. 5/2021). Advanced Materials Technologies, 2021, 6, 2170026.	3.0	Ο
346	In-operando and in-vivo polymerization of trimers for neuromorphic and bioelectronic systems. , 0, , .		0
347	In-operando and in-vivo polymerization of trimers for neuromorphic and bioelectronic systems. , 0, , .		Ο
348	Fundamentals of electrochemical doping in polythiophene polymers. , 0, , .		0