
## Laura Miozzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7377367/publications.pdf Version: 2024-02-01



Ι λιιρλ Μιάτρι

| #  | Article                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Identification of Known and Novel Arundo donax L. MicroRNAs and Their Targets Using<br>High-Throughput Sequencing and Degradome Analysis. Life, 2022, 12, 651.                                                                                                                          | 2.4 | 1         |
| 2  | Modulation of class III peroxidase pathways and phenylpropanoids in Arundo donax under salt and phosphorus stress. Plant Physiology and Biochemistry, 2022, 183, 151-159.                                                                                                               | 5.8 | 3         |
| 3  | Women in the European Virus Bioinformatics Center. Viruses, 2022, 14, 1522.                                                                                                                                                                                                             | 3.3 | 1         |
| 4  | A Primer on the Analysis of High-Throughput Sequencing Data for Detection of Plant Viruses.<br>Microorganisms, 2021, 9, 841.                                                                                                                                                            | 3.6 | 36        |
| 5  | No Evidence for Seed Transmission of Tomato Yellow Leaf Curl Sardinia Virus in Tomato. Cells, 2021,<br>10, 1673.                                                                                                                                                                        | 4.1 | 8         |
| 6  | The Induction of an Effective dsRNA-Mediated Resistance Against Tomato Spotted Wilt Virus by<br>Exogenous Application of Double-Stranded RNA Largely Depends on the Selection of the Viral RNA<br>Target Region. Frontiers in Plant Science, 2020, 11, 533338.                          | 3.6 | 28        |
| 7  | Arbuscular Mycorrhizal Symbiosis Primes Tolerance to Cucumber Mosaic Virus in Tomato. Viruses, 2020, 12, 675.                                                                                                                                                                           | 3.3 | 23        |
| 8  | Different Genetic Sources Contribute to the Small RNA Population in the Arbuscular Mycorrhizal Fungus Gigaspora margarita. Frontiers in Microbiology, 2020, 11, 395.                                                                                                                    | 3.5 | 23        |
| 9  | Nondestructive Raman Spectroscopy as a Tool for Early Detection and Discrimination of the Infection of Tomato Plants by Two Economically Important Viruses. Analytical Chemistry, 2019, 91, 9025-9031.                                                                                  | 6.5 | 57        |
| 10 | Impact of high or low levels of phosphorus and high sodium in soils on productivity and stress tolerance of Arundo donax plants. Plant Science, 2019, 289, 110260.                                                                                                                      | 3.6 | 13        |
| 11 | Arbuscular Mycorrhizal Symbiosis: Plant Friend or Foe in the Fight Against Viruses?. Frontiers in<br>Microbiology, 2019, 10, 1238.                                                                                                                                                      | 3.5 | 52        |
| 12 | In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant. BMC Genomics, 2019, 20, 169.                                                                                      | 2.8 | 60        |
| 13 | First Report of Grapevine Latent Viroid Infecting Grapevine (Vitis vinifera) in Italy. Plant Disease, 2018,<br>102, 1672.                                                                                                                                                               | 1.4 | 3         |
| 14 | Evidence of new viruses infecting freesia hybrids showing necrotic disease. Acta Horticulturae, 2018, ,<br>21-28.                                                                                                                                                                       | 0.2 | 1         |
| 15 | A Short Indel-Lacking-Resistance Gene Triggers Silencing of the Photosynthetic Machinery<br>Components Through TYLCSV-Associated Endogenous siRNAs in Tomato. Frontiers in Plant Science,<br>2018, 9, 1470.                                                                             | 3.6 | 15        |
| 16 | The interaction of Lolium latent virus major coat protein with ankyrin repeat protein NbANKr<br>redirects it to chloroplasts and modulates virus infection. Journal of General Virology, 2018, 99,<br>730-742.                                                                          | 2.9 | 9         |
| 17 | Pyramiding <i>Ty</i> - <i>1</i> /i>/ <i>Ty</i> - <i>3</i> and <i>Ty</i> - <i>2</i> in tomato hybrids dramatically inhibits symptom expression and accumulation of tomato yellow leaf curl disease inducing viruses. Archives of Phytopathology and Plant Protection, 2017, 50, 213-227. | 1.3 | 33        |
| 18 | In silico prediction of miRNAs targeting ToLCV and their regulation in susceptible and resistant tomato plants. Australasian Plant Pathology, 2017, 46, 379-386.                                                                                                                        | 1.0 | 9         |

Laura Miozzi

| #  | Article                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Deep Sequencing Data and Infectivity Assays Indicate that Chickpea Chlorotic Dwarf Virus is the<br>Etiological Agent of the "Hard Fruit Syndrome―of Watermelon. Viruses, 2017, 9, 311.                                                                                                       | 3.3 | 18        |
| 20 | Novel functional microRNAs from virus-free and infected Vitis vinifera plants under water stress.<br>Scientific Reports, 2016, 6, 20167.                                                                                                                                                     | 3.3 | 81        |
| 21 | Comparison of small RNA profiles in Nicotiana benthamiana and Solanum lycopersicum infected by polygonum ringspot tospovirus reveals host-specific responses to viral infection. Virus Research, 2016, 211, 38-45.                                                                           | 2.2 | 21        |
| 22 | Small RNA profiles of wild-type and silencing suppressor-deficient tomato spotted wilt virus infected Nicotiana benthamiana. Virus Research, 2015, 208, 30-38.                                                                                                                               | 2.2 | 34        |
| 23 | Real-Time PCR Protocols for the Quantification of the Begomovirus Tomato Yellow Leaf Curl Sardinia<br>Virus in Tomato Plants and in Its Insect Vector. Methods in Molecular Biology, 2015, 1236, 61-72.                                                                                      | 0.9 | 13        |
| 24 | The first complete genome sequences of two distinct European tomato spotted wilt virus isolates.<br>Archives of Virology, 2015, 160, 591-595.                                                                                                                                                | 2.1 | 13        |
| 25 | Drawing siRNAs of Viral Origin Out from Plant siRNAs Libraries. Methods in Molecular Biology, 2015, 1236, 111-123.                                                                                                                                                                           | 0.9 | 5         |
| 26 | From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. BMC Genomics, 2014, 15, 221.                                                                                                                                            | 2.8 | 149       |
| 27 | The complete genome sequence of polygonum ringspot virus. Archives of Virology, 2014, 159, 3149-3152.                                                                                                                                                                                        | 2.1 | 9         |
| 28 | The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV). Mycorrhiza, 2014, 24, 179-186.                                                                                       | 2.8 | 61        |
| 29 | Bioinformatics approaches for viral metagenomics in plants using short RNAs: model case of study and application to a Cicer arietinum population. Frontiers in Microbiology, 2014, 5, 790.                                                                                                   | 3.5 | 42        |
| 30 | Transcriptomics of the Interaction between the Monopartite Phloem-Limited Geminivirus Tomato<br>Yellow Leaf Curl Sardinia Virus and Solanum lycopersicum Highlights a Role for Plant Hormones,<br>Autophagy and Plant Immune System Fine Tuning during Infection. PLoS ONE, 2014, 9, e89951. | 2.5 | 77        |
| 31 | Analysis of small RNAs derived from tomato yellow leaf curl Sardinia virus reveals a cross reaction<br>between the major viral hotspot and the plant host genome. Virus Research, 2013, 178, 287-296.                                                                                        | 2.2 | 39        |
| 32 | Genomeâ€wide identification of viral and host transcripts targeted by viral <scp>siRNAs</scp> in<br><i><scp>V</scp>itis vinifera</i> . Molecular Plant Pathology, 2013, 14, 30-43.                                                                                                           | 4.2 | 69        |
| 33 | Recombination profiles between Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia<br>virus in laboratory and field conditions: evolutionary and taxonomic implications. Journal of General<br>Virology, 2012, 93, 2712-2717.                                                 | 2.9 | 34        |
| 34 | Arbuscular Mycorrhizal Symbiosis Limits Foliar Transcriptional Responses to Viral Infection and<br>Favors Long-Term Virus Accumulation. Molecular Plant-Microbe Interactions, 2011, 24, 1562-1572.                                                                                           | 2.6 | 33        |
| 35 | The complete nucleotide sequence of an isolate of Tomato yellow leaf curl Sardinia virus found in<br>Sicily. Archives of Virology, 2010, 155, 1539-1542.                                                                                                                                     | 2.1 | 1         |
| 36 | ORTom: a multi-species approach based on conserved co-expression to identify putative functional relationships among genes in tomato. Plant Molecular Biology, 2010, 73, 519-532.                                                                                                            | 3.9 | 4         |

Laura Miozzi

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Deep sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine. Virology, 2010,<br>408, 49-56.                                                                                                                              | 2.4 | 109       |
| 38 | Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant Journal, 2010, 62, no-no.                                                                                                | 5.7 | 53        |
| 39 | Bacterial and fungal communities associated with <i>Tuber magnatum</i> â€productive niches. Plant<br>Biosystems, 2010, 144, 323-332.                                                                                                            | 1.6 | 45        |
| 40 | Identification of grapevine microRNAs and their targets using high throughput sequencing and degradome analysis. Plant Journal, 2010, 62, 960-76.                                                                                               | 5.7 | 335       |
| 41 | Global and cellâ€ŧype gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal<br>fungus. New Phytologist, 2009, 184, 975-987.                                                                                          | 7.3 | 187       |
| 42 | Two new natural begomovirus recombinants associated with the tomato yellow leaf curl disease co-exist with parental viruses in tomato epidemics in Italy. Virus Research, 2009, 143, 15-23.                                                     | 2.2 | 56        |
| 43 | Comparative Analysis of Expression Profiles in Shoots and Roots of Tomato Systemically Infected by<br>Tomato spotted wilt virus Reveals Organ-Specific Transcriptional Responses. Molecular Plant-Microbe<br>Interactions, 2009, 22, 1504-1513. | 2.6 | 64        |
| 44 | Functional Annotation and Identification of Candidate Disease Genes by Computational Analysis of<br>Normal Tissue Gene Expression Data. PLoS ONE, 2008, 3, e2439.                                                                               | 2.5 | 20        |
| 45 | Phospholipase A2 up-regulation during mycorrhiza formation in Tuber borchii. New Phytologist, 2005, 167, 229-238.                                                                                                                               | 7.3 | 38        |