James A Dumesic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/737726/publications.pdf

Version: 2024-02-01

249 papers

39,664 citations

94 h-index 2558 195 g-index

266 all docs 266 docs citations

266 times ranked 21383 citing authors

#	Article	IF	CITATIONS
1	Catalytic conversion of cellulose to levoglucosenone using propylsulfonic acid functionalized SBA-15 and H2SO4 in tetrahydrofuran. Biomass and Bioenergy, 2022, 156, 106315.	2.9	4
2	Ethanol to distillate-range molecules using Cu/MgxAlOy catalysts with low Cu loadings. Applied Catalysis B: Environmental, 2022, 304, 120984.	10.8	16
3	Mechanistic Study of 1,2-Dichloroethane Hydrodechlorination on Cu-Rich Pt–Cu Alloys: Combining Reaction Kinetics Experiments with DFT Calculations and Microkinetic Modeling. ACS Sustainable Chemistry and Engineering, 2022, 10, 1509-1523.	3.2	4
4	Controlled hydrogenation of a biomass-derived platform chemical formed by aldol-condensation of 5-hydroxymethyl furfural (HMF) and acetone over Ru, Pd, and Cu catalysts. Green Chemistry, 2022, 24, 2146-2159.	4.6	14
5	Identifying hydroxylated copper dimers in SSZ-13 <i>via</i> UV-vis-NIR spectroscopy. Catalysis Science and Technology, 2022, 12, 2744-2748.	2.1	7
6	Effect of catalyst support on cobalt catalysts for ethylene oligomerization into linear olefins. Catalysis Science and Technology, 2022, 12, 3639-3649.	2.1	5
7	Solvent and Chloride Ion Effects on the Acid-Catalyzed Conversion of Glucose to 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2022, 10, 8275-8288.	3.2	8
8	Microkinetic Modeling: A Tool for Rational Catalyst Design. Chemical Reviews, 2021, 121, 1049-1076.	23.0	191
9	Synthesis of performance-advantaged polyurethanes and polyesters from biomass-derived monomers by aldol-condensation of 5-hydroxymethyl furfural and hydrogenation. Green Chemistry, 2021, 23, 4355-4364.	4.6	25
10	Renewable linear alpha-olefins by base-catalyzed dehydration of biologically-derived fatty alcohols. Green Chemistry, 2021, 23, 4338-4354.	4.6	9
11	Design of closed-loop recycling production of a Diels–Alder polymer from a biomass-derived difuran as a functional additive for polyurethanes. Green Chemistry, 2021, 23, 9479-9488.	4.6	14
12	Sustainable production of 5-hydroxymethyl furfural from glucose for process integration with high fructose corn syrup infrastructure. Green Chemistry, 2021, 23, 3277-3288.	4. 6	30
13	Effects of water on the kinetics of acetone hydrogenation over Pt and Ru catalysts. Journal of Catalysis, 2021, 403, 215-227.	3.1	10
14	Visualizing plant cell wall changes proves the superiority of hydrochloric acid over sulfuric acid catalyzed l ³ -valerolactone pretreatment. Chemical Engineering Journal, 2021, 412, 128660.	6.6	26
15	Reaction kinetics study of ethylene oligomerization into linear olefins over carbon-supported cobalt catalysts. Journal of Catalysis, 2021, 404, 954-963.	3.1	4
16	Hydrodechlorination of 1,2-Dichloroethane on Platinum Catalysts: Insights from Reaction Kinetics Experiments, Density Functional Theory, and Microkinetic Modeling. ACS Catalysis, 2021, 11, 7890-7905.	5 . 5	12
17	Chemical kinetics for generalized two-step reaction schemes. Journal of Catalysis, 2021, , .	3.1	1
18	Ethylene oligomerization into linear olefins over cobalt oxide on carbon catalyst. Catalysis Science and Technology, 2021, 11, 3599-3608.	2.1	10

#	Article	IF	CITATIONS
19	The relevance of Lewis acid sites on the gas phase reaction of levulinic acid into ethyl valerate using CoSBA-xAl bifunctional catalysts. Catalysis Science and Technology, 2021, 11, 4280-4293.	2.1	5
20	Production of Hexane-1,2,5,6-tetrol from Biorenewable Levoglucosanol over Pt-WO _{<i>x</i>} /TiO ₂ . ACS Sustainable Chemistry and Engineering, 2021, 9, 16123-16132.	3.2	3
21	A machine learning framework for the analysis and prediction of catalytic activity from experimental data. Applied Catalysis B: Environmental, 2020, 263, 118257.	10.8	76
22	Synthesis of Hexane-Tetrols and -Triols with Fixed Hydroxyl Group Positions and Stereochemistry from Methyl Glycosides over Supported Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 800-805.	3.2	13
23	Catalytic Production of Glucose–Galactose Syrup from Greek Yogurt Acid Whey in a Continuousâ€Flow Reactor. ChemSusChem, 2020, 13, 791-802.	3.6	6
24	Effect of Mixed-Solvent Environments on the Selectivity of Acid-Catalyzed Dehydration Reactions. ACS Catalysis, 2020, 10, 1679-1691.	5 . 5	45
25	Synthesis Gas Conversion Over Molybdenum-Based Catalysts Promoted by Transition Metals. ACS Catalysis, 2020, 10, 365-374.	5 . 5	21
26	Chemicalâ€Switching Strategy for Synthesis and Controlled Release of Norcantharimides from a Biomassâ€Derived Chemical. ChemSusChem, 2020, 13, 5213-5219.	3.6	20
27	Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Science Advances, 2020, 6, .	4.7	170
28	Production of renewable alcohols from maple wood using supercritical methanol hydrodeoxygenation in a semi-continuous flowthrough reactor. Green Chemistry, 2020, 22, 8462-8477.	4.6	9
29	Production of <i>p</i> -Coumaric Acid from Corn GVL-Lignin. ACS Sustainable Chemistry and Engineering, 2020, 8, 17427-17438.	3.2	41
30	Mechanistic Insights into the Conversion of Biorenewable Levoglucosanol to Dideoxysugars. ACS Sustainable Chemistry and Engineering, 2020, 8, 16339-16349.	3.2	4
31	Catalytic strategy for conversion of fructose to organic dyes, polymers, and liquid fuels. Green Chemistry, 2020, 22, 5285-5295.	4.6	21
32	Rates of levoglucosanol hydrogenolysis over Brønsted and Lewis acid sites on platinum silica-alumina catalysts synthesized by atomic layer deposition. Journal of Catalysis, 2020, 389, 111-120.	3.1	8
33	Mechanistic Study of Diaryl Ether Bond Cleavage during Palladiumâ€Catalyzed Lignin Hydrogenolysis. ChemSusChem, 2020, 13, 4487-4494.	3.6	36
34	Reaction Mechanism of Vapor-Phase Formic Acid Decomposition over Platinum Catalysts: DFT, Reaction Kinetics Experiments, and Microkinetic Modeling. ACS Catalysis, 2020, 10, 4112-4126.	5 . 5	51
35	AgPd and CuPd Catalysts for Selective Hydrogenation of Acetylene. ACS Catalysis, 2020, 10, 8567-8581.	5.5	96
36	Enhanced Acid-Catalyzed Lignin Depolymerization in a Continuous Reactor with Stable Activity. ACS Sustainable Chemistry and Engineering, 2020, 8, 4096-4106.	3.2	25

#	Article	IF	Citations
37	A self-adjusting platinum surface for acetone hydrogenation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3446-3450.	3.3	17
38	Rational Design of Mixed Solvent Systems for Acid-Catalyzed Biomass Conversion Processes Using a Combined Experimental, Molecular Dynamics and Machine Learning Approach. Topics in Catalysis, 2020, 63, 649-663.	1.3	11
39	Solid-State NMR Studies of Solvent-Mediated, Acid-Catalyzed Woody Biomass Pretreatment for Enzymatic Conversion of Residual Cellulose. ACS Sustainable Chemistry and Engineering, 2020, 8, 6551-6563.	3.2	10
40	Synthesis of biomass-derived feedstocks for the polymers and fuels industries from 5-(hydroxymethyl)furfural (HMF) and acetone. Green Chemistry, 2019, 21, 5532-5540.	4.6	57
41	Catalytic hydrogenation of dihydrolevoglucosenone to levoglucosanol with a hydrotalcite/mixed oxide copper catalyst. Green Chemistry, 2019, 21, 5000-5007.	4.6	18
42	Catalytic C-O bond hydrogenolysis of tetrahydrofuran-dimethanol over metal supported WOx/TiO2 catalysts. Applied Catalysis B: Environmental, 2019, 258, 117945.	10.8	32
43	Catalytic dehydration of levoglucosan to levoglucosenone using Brønsted solid acid catalysts in tetrahydrofuran. Green Chemistry, 2019, 21, 4988-4999.	4.6	33
44	A comparative study of secondary depolymerization methods on oxidized lignins. Green Chemistry, 2019, 21, 3940-3947.	4.6	38
45	Hexane-1,2,5,6-tetrol as a Versatile and Biobased Building Block for the Synthesis of Sustainable (Chiral) Crystalline Mesoporous Polyboronates. ACS Sustainable Chemistry and Engineering, 2019, 7, 13430-13436.	3.2	7
46	Condensed Phase Deactivation of Solid Br \tilde{A} ,nsted Acids in the Dehydration of Fructose to Hydroxymethylfurfural. ACS Catalysis, 2019, 9, 11568-11578.	5.5	19
47	Hydrodechlorination of 1,2-dichloroethane on supported AgPd catalysts. Journal of Catalysis, 2019, 370, 241-250.	3.1	27
48	Growth-coupled bioconversion of levulinic acid to butanone. Metabolic Engineering, 2019, 55, 92-101.	3.6	16
49	On the nature of active sites for formic acid decomposition on gold catalysts. Catalysis Science and Technology, 2019, 9, 2836-2848.	2.1	24
50	<i>In situ</i> , <i>operando</i> studies on the size and structure of supported Pt catalysts under supercritical conditions by simultaneous synchrotron-based X-ray techniques. Physical Chemistry Chemical Physics, 2019, 21, 11740-11747.	1.3	7
51	Supercritical methanol depolymerization and hydrodeoxygenation of lignin and biomass over reduced copper porous metal oxides. Green Chemistry, 2019, 21, 2988-3005.	4.6	63
52	Kinetic and mechanistic insights into hydrogenolysis of lignin to monomers in a continuous flow reactor. Green Chemistry, 2019, 21, 3561-3572.	4.6	56
53	Chemistries and processes for the conversion of ethanol into middle-distillate fuels. Nature Reviews Chemistry, 2019, 3, 223-249.	13.8	132
54	Effects of chloride ions in acid-catalyzed biomass dehydration reactions in polar aprotic solvents. Nature Communications, 2019, 10, 1132.	5.8	117

#	Article	IF	CITATIONS
55	Solvent system for effective near-term production of hydroxymethylfurfural (HMF) with potential for long-term process improvement. Energy and Environmental Science, 2019, 12, 2212-2222.	15.6	135
56	Ethanol condensation at elevated pressure over copper on AlMgO and AlCaO porous mixed-oxide supports. Catalysis Science and Technology, 2019, 9, 2032-2042.	2.1	25
57	Computational Framework for the Identification of Bioprivileged Molecules. ACS Sustainable Chemistry and Engineering, 2019, 7, 2414-2428.	3.2	20
58	Synthesis Gas Conversion over Rh/Mo Catalysts Prepared by Atomic Layer Deposition. ACS Catalysis, 2019, 9, 1810-1819.	5.5	33
59	Fundamental catalytic challenges to design improved biomass conversion technologies. Journal of Catalysis, 2019, 369, 518-525.	3.1	64
60	Solvent-enabled control of reactivity for liquid-phase reactions of biomass-derived compounds. Nature Catalysis, 2018, 1, 199-207.	16.1	211
61	Intrinsic activity of interfacial sites for Pt-Fe and Pt-Mo catalysts in the hydrogenation of carbonyl groups. Applied Catalysis B: Environmental, 2018, 231, 182-190.	10.8	41
62	Microkinetic Analysis and Scaling Relations for Catalyst Design. Annual Review of Chemical and Biomolecular Engineering, 2018, 9, 413-450.	3.3	73
63	Oxygenated commodity chemicals from chemoâ€catalytic conversion of biomass derived heterocycles. AICHE Journal, 2018, 64, 1910-1922.	1.8	73
64	A General Framework for the Evaluation of Direct Nonoxidative Methane Conversion Strategies. Joule, 2018, 2, 349-365.	11.7	86
65	Production of Alcohols from Cellulose by Supercritical Methanol Depolymerization and Hydrodeoxygenation. ACS Sustainable Chemistry and Engineering, 2018, 6, 4330-4344.	3.2	41
66	Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates. Energy and Environmental Science, 2018, 11, 617-628.	15.6	122
67	Lignin Conversion to Low-Molecular-Weight Aromatics via an Aerobic Oxidation-Hydrolysis Sequence: Comparison of Different Lignin Sources. ACS Sustainable Chemistry and Engineering, 2018, 6, 3367-3374.	3.2	118
68	Toward biomass-derived renewable plastics: Production of 2,5-furandicarboxylic acid from fructose. Science Advances, 2018, 4, eaap9722.	4.7	276
69	Synthesis of 1,6-Hexanediol from Cellulose Derived Tetrahydrofuran-Dimethanol with Pt-WO _{<i>x</i>} /TiO ₂ Catalysts. ACS Catalysis, 2018, 8, 1427-1439.	5.5	111
70	Ethane dehydrogenation on pristine and AlO _x decorated Pt stepped surfaces. Catalysis Science and Technology, 2018, 8, 2159-2174.	2.1	18
71	Production of monosaccharides and whey protein from acid whey waste streams in the dairy industry. Green Chemistry, 2018, 20, 1824-1834.	4.6	40
72	Mechanistic Insights into the Hydrogenolysis of Levoglucosanol over Bifunctional Platinum Silica–Alumina Catalysts. ACS Catalysis, 2018, 8, 3743-3753.	5 . 5	15

#	Article	IF	Citations
73	Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction. Applied Catalysis B: Environmental, 2018, 222, 182-190.	10.8	34
74	The role of Pt-FexOy interfacial sites for CO oxidation. Journal of Catalysis, 2018, 358, 19-26.	3.1	46
75	Improving economics of lignocellulosic biofuels: An integrated strategy for coproducing 1,5-pentanediol and ethanol. Applied Energy, 2018, 213, 585-594.	5.1	60
76	Amination of 1-hexanol on bimetallic AuPd/TiO ₂ catalysts. Green Chemistry, 2018, 20, 4695-4709.	4.6	22
77	An "ideal lignin―facilitates full biomass utilization. Science Advances, 2018, 4, eaau2968.	4.7	184
78	Synthesis Gas Conversion over Rh-Mn-W _{<i>x</i>} C/SiO ₂ Catalysts Prepared by Atomic Layer Deposition. ACS Catalysis, 2018, 8, 10707-10720.	5.5	17
79	Gold-catalyzed conversion of lignin to low molecular weight aromatics. Chemical Science, 2018, 9, 8127-8133.	3.7	61
80	Catalytic production of hexane-1,2,5,6-tetrol from bio-renewable levoglucosanol in water: effect of metal and acid sites on (stereo)-selectivity. Green Chemistry, 2018, 20, 4557-4565.	4.6	21
81	Enhanced Furfural Yields from Xylose Dehydration in the $\hat{I}^3 \hat{=} \mathbf{V}$ alerolactone/Water Solvent System at Elevated Temperatures. ChemSusChem, 2018, 11, 2321-2331.	3.6	69
82	Enhanced Furfural Yields from Xylose Dehydration in the γ-Valerolactone/Water Solvent System at Elevated Temperatures. ChemSusChem, 2018, 11, 2266-2266.	3.6	4
83	Selective Production of Terminally Unsaturated Methyl Esters from Lactones Over Metal Oxide Catalysts. Catalysis Letters, 2018, 148, 3072-3081.	1.4	6
84	Improving the production of maleic acid from biomass: TS-1 catalysed aqueous phase oxidation of furfural in the presence of \hat{I}^3 -valerolactone. Green Chemistry, 2018, 20, 2845-2856.	4.6	58
85	Methane Conversion to Ethylene and Aromatics on PtSn Catalysts. ACS Catalysis, 2017, 7, 2088-2100.	5.5	93
86	Characterizing Substrate–Surface Interactions on Alumina-Supported Metal Catalysts by Dynamic Nuclear Polarization-Enhanced Double-Resonance NMR Spectroscopy. Journal of the American Chemical Society, 2017, 139, 2702-2709.	6.6	59
87	Functionality and molecular weight distribution of red oak lignin before and after pyrolysis and hydrogenation. Green Chemistry, 2017, 19, 1378-1389.	4.6	80
88	Chemicals from Biomass: Combining Ringâ€Opening Tautomerization and Hydrogenation Reactions to Produce 1,5â€Pentanediol from Furfural. ChemSusChem, 2017, 10, 1351-1355.	3.6	100
89	Production of 1,6-hexanediol from tetrahydropyran-2-methanol by dehydration–hydration and hydrogenation. Green Chemistry, 2017, 19, 1390-1398.	4.6	24
90	Conversion of Furfural to 1,5-Pentanediol: Process Synthesis and Analysis. ACS Sustainable Chemistry and Engineering, 2017, 5, 4699-4706.	3.2	104

#	Article	IF	CITATIONS
91	Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization. Science Advances, 2017, 3, e1603301.	4.7	352
92	Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent–water mixtures. Green Chemistry, 2017, 19, 3642-3653.	4.6	121
93	Comparison of Fast Pyrolysis Behavior of Cornstover Lignins Isolated by Different Methods. ACS Sustainable Chemistry and Engineering, 2017, 5, 5657-5661.	3.2	13
94	Transitionâ€Metal Nitride Core@Nobleâ€Metal Shell Nanoparticles as Highly CO Tolerant Catalysts. Angewandte Chemie - International Edition, 2017, 56, 8828-8833.	7.2	88
95	Transitionâ€Metal Nitride Core@Nobleâ€Metal Shell Nanoparticles as Highly CO Tolerant Catalysts. Angewandte Chemie, 2017, 129, 8954-8959.	1.6	11
96	Synthesis Gas Conversion over Rh-Based Catalysts Promoted by Fe and Mn. ACS Catalysis, 2017, 7, 4550-4563.	5.5	51
97	Operando Solid-State NMR Observation of Solvent-Mediated Adsorption-Reaction of Carbohydrates in Zeolites. ACS Catalysis, 2017, 7, 3489-3500.	5.5	70
98	A co-solvent hydrolysis strategy for the production of biofuels: process synthesis and technoeconomic analysis. Reaction Chemistry and Engineering, 2017, 2, 397-405.	1.9	38
99	New catalytic strategies for \hat{l}_{\pm} , \hat{l}_{∞} -diols production from lignocellulosic biomass. Faraday Discussions, 2017, 202, 247-267.	1.6	61
100	Hydrogenation of levoglucosenone to renewable chemicals. Green Chemistry, 2017, 19, 1278-1285.	4.6	70
101	Hydrogenation of \hat{I}^3 -Butyrolactone to 1,4-Butanediol over CuCo/TiO ₂ Bimetallic Catalysts. ACS Catalysis, 2017, 7, 8429-8440.	5.5	52
102	Solvent–Solid Interface of Acid Catalysts Studied by High Resolution MAS NMR. Journal of Physical Chemistry C, 2017, 121, 17226-17234.	1.5	11
103	Supported two- and three-dimensional vanadium oxide species on the surface of \hat{l}^2 -SiC. Catalysis Science and Technology, 2017, 7, 3707-3714.	2.1	7
104	Ring Opening of Biomass-Derived Cyclic Ethers to Dienes over Silica/Alumina. ACS Catalysis, 2017, 7, 5248-5256.	5.5	36
105	Kinetics of Levoglucosenone Isomerization. ChemSusChem, 2017, 10, 129-138.	3.6	37
106	Effect of Particle Size upon Pt/SiO ₂ Catalytic Cracking of <i>n</i> i>nê€Dodecane under Supercritical Conditions: Inâ€situ SAXS and XANES Studies. ChemCatChem, 2017, 9, 99-102.	1.8	11
107	Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science, 2016, 352, 974-978.	6.0	495
108	Correction to "Selective Hydrogenation of Unsaturated Carbon–Carbon Bonds in Aromatic-Containing Platform Molecules― ACS Catalysis, 2016, 6, 3127-3127.	5.5	0

#	Article	IF	CITATIONS
109	Analysis of reaction schemes using maximum rates of constituent steps. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2879-88.	3.3	35
110	Role of the Cu-ZrO ₂ Interfacial Sites for Conversion of Ethanol to Ethyl Acetate and Synthesis of Methanol from CO ₂ and H ₂ . ACS Catalysis, 2016, 6, 7040-7050.	5 . 5	136
111	Effect of carbon supports on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-methanol. Catalysis Science and Technology, 2016, 6, 7841-7851.	2.1	25
112	An engineered solvent system for sugar production from lignocellulosic biomass using biomass derived \hat{l}^3 -valerolactone. Green Chemistry, 2016, 18, 5756-5763.	4.6	55
113	Measurement of intrinsic catalytic activity of Pt monometallic and Pt-MoOx interfacial sites over visible light enhanced PtMoOx/SiO2 catalyst in reverse water gas shift reaction. Journal of Catalysis, 2016, 344, 784-794.	3.1	45
114	Coupling chemical and biological catalysis: a flexible paradigm for producing biobased chemicals. Current Opinion in Biotechnology, 2016, 38, 54-62.	3.3	74
115	PtMo Bimetallic Catalysts Synthesized by Controlled Surface Reactions for Water Gas Shift. ACS Catalysis, 2016, 6, 1334-1344.	5.5	37
116	Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR. Chemical Communications, 2016, 52, 1859-1862.	2.2	36
117	Active sites and mechanisms for H ₂ O ₂ decomposition over Pd catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1973-82.	3.3	171
118	Selective Hydrogenation of Unsaturated Carbon–Carbon Bonds in Aromatic-Containing Platform Molecules. ACS Catalysis, 2016, 6, 2047-2054.	5.5	23
119	Modifying the Surface Properties of Heterogeneous Catalysts Using Polymer-Derived Microenvironments. Topics in Catalysis, 2016, 59, 19-28.	1.3	8
120	Methionine bound to Pd/ \hat{i}^3 -Al2O3 catalysts studied by solid-state 13C NMR. Solid State Nuclear Magnetic Resonance, 2015, 72, 64-72.	1.5	7
121	Graphiticâ€Carbon Layers on Oxides: Toward Stable Heterogeneous Catalysts for Biomass Conversion Reactions. Angewandte Chemie, 2015, 127, 8050-8054.	1.6	11
122	Effects of Water on the Copperâ€Catalyzed Conversion of Hydroxymethylfurfural in Tetrahydrofuran. ChemSusChem, 2015, 8, 3983-3986.	3.6	47
123	Solventâ€Enabled Nonenyzmatic Sugar Production from Biomass for Chemical and Biological Upgrading. ChemSusChem, 2015, 8, 1317-1322.	3.6	30
124	Synthesis of Supported RhMo and PtMo Bimetallic Catalysts by Controlled Surface Reactions. ChemCatChem, 2015, 7, 3881-3886.	1.8	26
125	Graphiticâ€Carbon Layers on Oxides: Toward Stable Heterogeneous Catalysts for Biomass Conversion Reactions. Angewandte Chemie - International Edition, 2015, 54, 7939-7943.	7.2	63
126	Dehydration of cellulose to levoglucosenone using polar aprotic solvents. Energy and Environmental Science, 2015, 8, 1808-1815.	15.6	167

#	Article	IF	Citations
127	Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation. Journal of Catalysis, 2015, 328, 75-90.	3.1	57
128	A lignocellulosic ethanol strategy via nonenzymatic sugar production: Process synthesis and analysis. Bioresource Technology, 2015, 182, 258-266.	4.8	91
129	Catalyst Design with Atomic Layer Deposition. ACS Catalysis, 2015, 5, 1804-1825.	5.5	608
130	Inhibition of Metal Hydrogenation Catalysts by Biogenic Impurities. Catalysis Letters, 2015, 145, 15-22.	1.4	27
131	Reverse Water–Gas Shift on Interfacial Sites Formed by Deposition of Oxidized Molybdenum Moieties onto Gold Nanoparticles. Journal of the American Chemical Society, 2015, 137, 10317-10325.	6.6	87
132	Lignin monomer production integrated into the \hat{I}^3 -valerolactone sugar platform. Energy and Environmental Science, 2015, 8, 2657-2663.	15.6	212
133	Tuning Acid–Base Properties Using Mg–Al Oxide Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2015, 7, 16573-16580.	4.0	20
134	Stabilizing cobalt catalysts for aqueous-phase reactions by strong metal-support interaction. Journal of Catalysis, 2015, 330, 19-27.	3.1	111
135	Carbon Overcoating of Supported Metal Catalysts for Improved Hydrothermal Stability. ACS Catalysis, 2015, 5, 4546-4555.	5.5	88
136	Selective Production of Levulinic Acid from Furfuryl Alcohol in THF Solvent Systems over H-ZSM-5. ACS Catalysis, 2015, 5, 3354-3359.	5.5	116
137	Direct Synthesis of Hydrogen Peroxide Over Au–Pd Catalysts Prepared by Electroless Deposition. Catalysis Letters, 2015, 145, 2057-2065.	1.4	11
138	Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts. Catalysis Science and Technology, 2015, 5, 2590-2601.	2.1	104
139	Operando X-ray Absorption Spectroscopy Studies of Sintering for Supported Copper Catalysts during Liquid-phase Reaction. ChemCatChem, 2014, 6, 2437-2437.	1.8	0
140	Engineering Catalyst Microenvironments for Metalâ€Catalyzed Hydrogenation of Biologically Derived Platform Chemicals. Angewandte Chemie - International Edition, 2014, 53, 12718-12722.	7.2	64
141	Formic acid decomposition on Au catalysts: DFT, microkinetic modeling, and reaction kinetics experiments. AICHE Journal, 2014, 60, 1303-1319.	1.8	87
142	Bridging the Chemical and Biological Catalysis Gap: Challenges and Outlooks for Producing Sustainable Chemicals. ACS Catalysis, 2014, 4, 2060-2069.	5.5	160
143	A strategy for the simultaneous catalytic conversion of hemicellulose and cellulose from lignocellulosic biomass to liquid transportation fuels. Green Chemistry, 2014, 16, 653-661.	4.6	124
144	Nonenzymatic Sugar Production from Biomass Using Biomass-Derived \hat{I}^3 -Valerolactone. Science, 2014, 343, 277-280.	6.0	607

#	Article	IF	Citations
145	Solvent Effects in Acid atalyzed Biomass Conversion Reactions. Angewandte Chemie - International Edition, 2014, 53, 11872-11875.	7.2	371
146	Engineering Catalyst Microenvironments for Metalâ€Catalyzed Hydrogenation of Biologically Derived Platform Chemicals. Angewandte Chemie, 2014, 126, 12932-12936.	1.6	11
147	Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chemistry, 2014, 16, 4816-4838.	4.6	399
148	Effects of Î ³ -valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides. Green Chemistry, 2014, 16, 4659-4662.	4.6	149
149	Density Functional Theory Calculations and Analysis of Reaction Pathways for Reduction of Nitric Oxide by Hydrogen on Pt(111). ACS Catalysis, 2014, 4, 3307-3319.	5.5	93
150	Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy and Environmental Science, 2014, 7, 1500-1523.	15.6	342
151	Selective Conversion of Cellulose to Hydroxymethylfurfural in Polar Aprotic Solvents. ChemCatChem, 2014, 6, 2229-2234.	1.8	110
152	Enhanced stability of cobalt catalysts by atomic layer deposition for aqueous-phase reactions. Energy and Environmental Science, 2014, 7, 1657.	15.6	109
153	Operando Xâ€ray Absorption Spectroscopy Studies of Sintering for Supported Copper Catalysts during Liquidâ€phase Reaction. ChemCatChem, 2014, 6, 2493-2496.	1.8	24
154	Tandem Catalytic Conversion of Glucose to 5-Hydroxymethylfurfural with an Immobilized Enzyme and a Solid Acid. ACS Catalysis, 2014, 4, 2165-2168.	5.5	102
155	Frontispiece: Engineering Catalyst Microenvironments for Metal-Catalyzed Hydrogenation of Biologically Derived Platform Chemicals. Angewandte Chemie - International Edition, 2014, 53, .	7.2	0
156	Frontispiz: Engineering Catalyst Microenvironments for Metal-Catalyzed Hydrogenation of Biologically Derived Platform Chemicals. Angewandte Chemie, 2014, 126, n/a-n/a.	1.6	0
157	Aqueous Phase Glycerol Reforming with Pt and PtMo Bimetallic Nanoparticle Catalysts: The Role of the Mo Promoter. Topics in Catalysis, 2013, 56, 1814-1828.	1.3	32
158	Production of Furfural from Lignocellulosic Biomass Using Beta Zeolite and Biomass-Derived Solvent. Topics in Catalysis, 2013, 56, 1775-1781.	1.3	111
159	Exploring Meerwein–Ponndorf–Verley Reduction Chemistry for Biomass Catalysis Using a First-Principles Approach. ACS Catalysis, 2013, 3, 2694-2704.	5.5	92
160	Bimetallic RhRe/C catalysts for the production of biomass-derived chemicals. Journal of Catalysis, 2013, 308, 226-236.	3.1	69
161	Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chemistry, 2013, 15, 584.	4.6	868
162	Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams. Energy and Environmental Science, 2013, 6, 205-216.	15.6	184

#	Article	IF	Citations
163	Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents. Green Chemistry, 2013, 15, 85-90.	4.6	310
164	Conversion of Hemicellulose into Furfural Using Solid Acid Catalysts in γâ€Valerolactone. Angewandte Chemie - International Edition, 2013, 52, 1270-1274.	7.2	397
165	Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts. Catalysis Science and Technology, 2013, 3, 927-931.	2.1	213
166	Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energy and Environmental Science, 2013, 6, 76-80.	15.6	332
167	Mechanistic Insights into Ring-Opening and Decarboxylation of 2-Pyrones in Liquid Water and Tetrahydrofuran. Journal of the American Chemical Society, 2013, 135, 5699-5708.	6.6	56
168	Mechanocatalytic Depolymerization of Dry (Ligno)cellulose As an Entry Process for High-Yield Production of Furfurals. ACS Catalysis, 2013, 3, 993-997.	5.5	126
169	Aqueous-phase hydrodeoxygenation of sorbitol: A comparative study of Pt/Zr phosphate and PtReOx/C. Journal of Catalysis, 2013, 304, 72-85.	3.1	121
170	Stabilization of Copper Catalysts for Liquidâ€Phase Reactions by Atomic Layer Deposition. Angewandte Chemie - International Edition, 2013, 52, 13808-13812.	7.2	162
171	Density Functional Theory and Reaction Kinetics Studies of the Water–Gas Shift Reaction on Pt–Re Catalysts. ChemCatChem, 2013, 5, 3690-3699.	1.8	28
172	Innentitelbild: A Tailored Microenvironment for Catalytic Biomass Conversion in Inorganic–Organic Nanoreactors (Angew. Chem. 39/2013). Angewandte Chemie, 2013, 125, 10314-10314.	1.6	0
173	A Tailored Microenvironment for Catalytic Biomass Conversion in Inorganic–Organic Nanoreactors. Angewandte Chemie, 2013, 125, 10539-10541.	1.6	24
174	Rýcktitelbild: Stabilization of Copper Catalysts for Liquid-Phase Reactions by Atomic Layer Deposition (Angew. Chem. 51/2013). Angewandte Chemie, 2013, 125, 14068-14068.	1.6	1
175	Atomic layer deposition of titanium phosphate on silica nanoparticles. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	34
176	A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Current Opinion in Chemical Engineering, 2012, 1, 218-224.	3.8	273
177	Sn-Beta catalysed conversion of hemicellulosic sugars. Green Chemistry, 2012, 14, 702.	4.6	216
178	Catalytic conversion of biomass using solvents derived from lignin. Green Chemistry, 2012, 14, 1573.	4.6	119
179	Acid-Functionalized SBA-15-Type Periodic Mesoporous Organosilicas and Their Use in the Continuous Production of 5-Hydroxymethylfurfural. ACS Catalysis, 2012, 2, 1865-1876.	5.5	115
180	Ce promoted Pd–Nb catalysts for γ-valerolactone ring-opening and hydrogenation. Green Chemistry, 2012, 14, 3318.	4.6	39

#	Article	IF	CITATIONS
181	Production of butene oligomers as transportation fuels using butene for esterification of levulinic acid from lignocellulosic biomass: process synthesis and technoeconomic evaluation. Green Chemistry, 2012, 14, 3289.	4.6	59
182	A sulfuric acid management strategy for the production of liquid hydrocarbon fuels via catalytic conversion of biomass-derived levulinic acid. Energy and Environmental Science, 2012, 5, 9690.	15.6	72
183	Production of 5-Hydroxymethylfurfural from Glucose Using a Combination of Lewis and Brønsted Acid Catalysts in Water in a Biphasic Reactor with an Alkylphenol Solvent. ACS Catalysis, 2012, 2, 930-934.	5.5	455
184	Acid-catalyzed conversion of furfuryl alcohol to ethyl levulinate in liquid ethanol. Energy and Environmental Science, 2012, 5, 8990.	15.6	146
185	Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems. Energy and Environmental Science, 2012, 5, 8199.	15.6	316
186	Experimental and theoretical studies of the acid-catalyzed conversion of furfuryl alcohol to levulinic acid in aqueous solution. Energy and Environmental Science, 2012, 5, 6981.	15.6	136
187	The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts. Green Chemistry, 2012, 14, 1413.	4.6	284
188	Triacetic acid lactone as a potential biorenewable platform chemical. Green Chemistry, 2012, 14, 1850.	4.6	117
189	Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chemical Society Reviews, 2012, 41, 8075.	18.7	1,167
190	Conversion of Hemicellulose to Furfural and Levulinic Acid using Biphasic Reactors with Alkylphenol Solvents. ChemSusChem, 2012, 5, 383-387.	3.6	228
191	Aqueous Phase Glycerol Reforming by PtMo Bimetallic Nano-Particle Catalyst: Product Selectivity and Structural Characterization. Topics in Catalysis, 2012, 55, 53-69.	1.3	62
192	Water-Compatible Lewis Acid-Catalyzed Conversion of Carbohydrates to 5-Hydroxymethylfurfural in a Biphasic Solvent System. Topics in Catalysis, 2012, 55, 657-662.	1.3	66
193	Catalytic conversion of lignocellulosic biomass to fuels: Process development and technoeconomic evaluation. Chemical Engineering Science, 2012, 67, 57-67.	1.9	113
194	RuSn bimetallic catalysts for selective hydrogenation of levulinic acid to \hat{l}^3 -valerolactone. Applied Catalysis B: Environmental, 2012, 117-118, 321-329.	10.8	196
195	Selective Hydrogenolysis of Polyols and Cyclic Ethers over Bifunctional Surface Sites on Rhodium–Rhenium Catalysts. Journal of the American Chemical Society, 2011, 133, 12675-12689.	6.6	439
196	Reaction Kinetics of Ethylene Glycol Reforming over Platinum in the Vapor versus Aqueous Phases. Journal of Physical Chemistry C, 2011, 115, 961-971.	1.5	68
197	Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy and Environmental Science, 2011, 4, 83-99.	15.6	747
198	Synthesis of Highly Ordered Hydrothermally Stable Mesoporous Niobia Catalysts by Atomic Layer Deposition. ACS Catalysis, 2011, 1, 1234-1245.	5.5	132

#	Article	IF	CITATIONS
199	Microkinetic analysis and mechanism of the water gas shift reaction over copper catalysts. Journal of Catalysis, 2011, 281, 1-11.	3.1	100
200	Production of liquid hydrocarbon fuels by catalytic conversion of biomass-derived levulinic acid. Green Chemistry, 2011, 13, 1755.	4.6	289
201	Activation of Amberlyst-70 for Alkene Oligomerization in Hydrophobic Media. Topics in Catalysis, 2011, 54, 447-457.	1.3	15
202	Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes. Chemical Engineering Journal, 2011, 169, 329-338.	6.6	219
203	Atomic Layer Deposition for Improved Stability of Catalysts for the Conversion of Biomass to Chemicals and Fuels. Materials Research Society Symposia Proceedings, 2011, 1366, 1.	0.1	1
204	Dual-bed catalyst system for C–C coupling of biomass-derived oxygenated hydrocarbons to fuel-grade compounds. Green Chemistry, 2010, 12, 223.	4.6	65
205	Xâ€ray Absorption Spectroscopy of Bimetallic Pt–Re Catalysts for Hydrogenolysis of Glycerol to Propanediols. ChemCatChem, 2010, 2, 1107-1114.	1.8	134
206	Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen. Applied Catalysis B: Environmental, 2010, 100, 184-189.	10.8	254
207	Catalytic upgrading of levulinic acid to 5-nonanone. Green Chemistry, 2010, 12, 574.	4.6	330
208	Catalytic Conversion of Renewable Biomass Resources to Fuels and Chemicals. Annual Review of Chemical and Biomolecular Engineering, 2010, 1, 79-100.	3.3	318
209	Catalytic conversion of biomass to biofuels. Green Chemistry, 2010, 12, 1493.	4.6	2,017
210	Ketonization Reactions of Carboxylic Acids and Esters over Ceriaâ^'Zirconia as Biomass-Upgrading Processes. Industrial & Engineering Chemistry Research, 2010, 49, 6027-6033.	1.8	79
211	Integrated Catalytic Conversion of \hat{l}^3 -Valerolactone to Liquid Alkenes for Transportation Fuels. Science, 2010, 327, 1110-1114.	6.0	988
212	Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes. Green Chemistry, 2010, 12, 992.	4.6	150
213	Dehydration of butanol to butene over solid acid catalysts in high water environments. Journal of Catalysis, 2009, 262, 134-143.	3.1	93
214	Solvent Effects on Fructose Dehydration to 5-Hydroxymethylfurfural in Biphasic Systems Saturated with Inorganic Salts. Topics in Catalysis, 2009, 52, 297-303.	1.3	407
215	Catalytic conversion of biomass-derived carbohydrates to fuels and chemicals by formation and upgrading of mono-functional hydrocarbon intermediates. Catalysis Today, 2009, 147, 115-125.	2.2	127
216	Catalytic Production of Liquid Fuels from Biomassâ€Derived Oxygenated Hydrocarbons: Catalytic Coupling at Multiple Length Scales. Catalysis Reviews - Science and Engineering, 2009, 51, 441-484.	5.7	110

#	Article	IF	Citations
217	Modeling Ethanol Decomposition on Transition Metals: A Combined Application of Scaling and BrønstedⴒEvansⴒPolanyi Relations. Journal of the American Chemical Society, 2009, 131, 5809-5815.	6.6	275
218	Catalytic upgrading of lactic acid to fuels and chemicals by dehydration/hydrogenation and C–C coupling reactions. Green Chemistry, 2009, 11, 1101.	4.6	87
219	Liquid Alkanes with Targeted Molecular Weights from Biomassâ€Derived Carbohydrates. ChemSusChem, 2008, 1, 417-424.	3.6	228
220	Carbonâ€"carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system. Journal of Molecular Catalysis A, 2008, 296, 18-27.	4.8	194
221	Catalytic Conversion of Biomass to Monofunctional Hydrocarbons and Targeted Liquid-Fuel Classes. Science, 2008, 322, 417-421.	6.0	840
222	Mechanism of the Water Gas Shift Reaction on Pt:  First Principles, Experiments, and Microkinetic Modeling. Journal of Physical Chemistry C, 2008, 112, 4608-4617.	1.5	452
223	On the Mechanism of Low-Temperature Water Gas Shift Reaction on Copper. Journal of the American Chemical Society, 2008, 130, 1402-1414.	6.6	839
224	Coupling of glycerol processing with Fischer–Tropsch synthesis for production of liquid fuels. Green Chemistry, 2007, 9, 1073.	4.6	103
225	Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chemistry, 2007, 9, 342-350.	4.6	1,060
226	Liquidâ€Phase Catalytic Processing of Biomassâ€Derived Oxygenated Hydrocarbons to Fuels and Chemicals. Angewandte Chemie - International Edition, 2007, 46, 7164-7183.	7.2	2,148
227	An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catalysis Today, 2007, 123, 59-70.	2.2	464
228	Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, 2007, 447, 982-985.	13.7	2,011
229	Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose. Science, 2006, 312, 1933-1937.	6.0	1,466
230	An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catalysis Today, 2006, 111, 119-132.	2.2	612
231	Prediction of Experimental Methanol Decomposition Rates on Platinum from First Principles. Topics in Catalysis, 2006, 37, 17-28.	1.3	140
232	Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates. Science, 2005, 308, 1446-1450.	6.0	1,502
233	Renewable Alkanes by Aqueous-Phase Reforming of Biomass-Derived Oxygenates. Angewandte Chemie - International Edition, 2004, 43, 1549-1551.	7.2	520
234	Molecular-level descriptions of surface chemistry in kinetic models using density functional theory. Chemical Engineering Science, 2004, 59, 4679-4691.	1.9	227

#	Article	IF	CITATIONS
235	Density-functional theory studies of acetone and propanal hydrogenation on Pt(111). Journal of Chemical Physics, 2002, 116, 8973-8980.	1.2	54
236	On the Mechanism of the NO Reduction by Propylene Over Supported Pt Catalysts. Catalysis Letters, 2002, 83, 109-114.	1.4	15
237	Density functional theory studies of the adsorption of ethylene and oxygen on Pt(111) and Pt[sub 3]Sn(111). Journal of Chemical Physics, 2001, 114, 4663.	1.2	80
238	The Chemistry of GaN Growth. Materials Research Society Symposia Proceedings, 2000, 639, 111.	0.1	2
239	Selective dehydrogenation of isobutane over supported Pt/Sn catalysts. Catalysis Today, 2000, 55, 213-223.	2.2	132
240	Title is missing!. Catalysis Letters, 2000, 68, 129-138.	1.4	21
241	Microcalorimetric, Infrared Spectroscopic, and DFT Studies of Ethylene Adsorption on Pd and Pd/Sn Catalysts. Langmuir, 2000, 16, 2213-2219.	1.6	52
242	Theoretical Studies of Stability and Reactivity of C2Hydrocarbon Species on Pt Clusters, Pt(111), and Pt(211). Journal of Physical Chemistry B, 2000, 104, 2299-2310.	1.2	121
243	Microcalorimetric, Infrared Spectroscopic, and DFT Studies of Ethylene Adsorption on Pt/SiO2 and Ptâ^'Sn/SiO2 Catalysts. Journal of Physical Chemistry B, 1999, 103, 3923-3934.	1.2	112
244	Microcalorimetric and Reaction Kinetic Studies of Alkali Metals on Pt Powder and Pt/SiO2and Pt/Sn/SiO2Catalysts. The Journal of Physical Chemistry, 1996, 100, 17260-17265.	2.9	15
245	Ammonia synthesis kinetics: Surface chemistry, rate expressions, and kinetic analysis. Topics in Catalysis, 1994, 1, 233-252.	1.3	61
246	Microcalorimetric studies of zeolite acidity. Catalysis Letters, 1992, 12, 201-211.	1.4	79
247	Microkinetic analysis of methane dimerization reaction. Industrial & Engineering Chemistry Research, 1991, 30, 2114-2123.	1.8	44
248	Thermal Decomposition of Iron Pentacarbonyl on Titania. ACS Symposium Series, 1984, , 3-19.	0.5	5
249	Catalytic Conversion of Cellulose to Levoglucosenone Using Propylsulfonic Acid Functionalized Sba-15 and H2so4Âln Tetrahydrofuran. SSRN Electronic Journal, 0, , .	0.4	0