Waldemar Vollmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7376418/publications.pdf

Version: 2024-02-01

30070 28297 13,138 151 54 105 citations g-index h-index papers 171 171 171 9679 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Slippery Liquid-Like Solid Surfaces with Promising Antibiofilm Performance under Both Static and Flow Conditions. ACS Applied Materials & Interfaces, 2022, 14, 6307-6319.	8.0	35
2	Asymmetric peptidoglycan editing generates cell curvature in Bdellovibrio predatory bacteria. Nature Communications, 2022, 13, 1509.	12.8	12
3	The VarA-CsrA regulatory pathway influences cell shape in Vibrio cholerae. PLoS Genetics, 2022, 18, e1010143.	3.5	5
4	Peptidoglycan from <i>Akkermansia muciniphila</i> MucT: chemical structure and immunostimulatory properties of muropeptides. Glycobiology, 2022, 32, 712-719.	2.5	2
5	Peptidoglycan biosynthesis is driven by lipid transfer along enzyme-substrate affinity gradients. Nature Communications, 2022, 13, 2278.	12.8	20
6	Early midcell localization of Escherichia coli PBP4 supports the function of peptidoglycan amidases. PLoS Genetics, 2022, 18, e1010222.	3.5	5
7	Peptidoglycan Recycling Promotes Outer Membrane Integrity and Carbapenem Tolerance in Acinetobacter baumannii. MBio, 2022, 13, .	4.1	8
8	Peptidoglycan maturation controls outer membrane protein assembly. Nature, 2022, 606, 953-959.	27.8	34
9	Penicillin-Binding Protein 1 (PBP1) of Staphylococcus aureus Has Multiple Essential Functions in Cell Division. MBio, 2022, 13, .	4.1	11
10	Septal Class A Penicillin-Binding Protein Activity and <scp>ld</scp> -Transpeptidases Mediate Selection of Colistin-Resistant Lipooligosaccharide-Deficient Acinetobacter baumannii. MBio, 2021, 12, .	4.1	17
11	Real-time monitoring of peptidoglycan synthesis by membrane-reconstituted penicillin-binding proteins. ELife, 2021, 10, .	6.0	13
12	ActS activates peptidoglycan amidases during outer membrane stress in <i>Escherichia coli</i> Molecular Microbiology, 2021, 116, 329-342.	2.5	28
13	The Novel Membrane-Associated Auxiliary Factors AuxA and AuxB Modulate β-lactam Resistance in MRSA by stabilizing Lipoteichoic Acids. International Journal of Antimicrobial Agents, 2021, 57, 106283.	2.5	17
14	Staphylococcus aureus cell wall structure and dynamics during host-pathogen interaction. PLoS Pathogens, 2021, 17, e1009468.	4.7	36
15	Localizing Peptidoglycan Synthesis in Helicobacter pylori using Clickable Metabolic Probes. Current Protocols, 2021, 1, e80.	2.9	5
16	Regulation and function of class A Penicillin-binding proteins. Current Opinion in Microbiology, 2021, 60, 80-87.	5.1	29
17	The active repertoire of <i>Escherichia coli</i> peptidoglycan amidases varies with physiochemical environment. Molecular Microbiology, 2021, 116, 311-328.	2.5	24
18	Discovery of Pyrrolidine-2,3-diones as Novel Inhibitors of P. aeruginosa PBP3. Antibiotics, 2021, 10, 529.	3.7	11

#	Article	IF	CITATIONS
19	DpaA Detaches Braun's Lipoprotein from Peptidoglycan. MBio, 2021, 12, .	4.1	22
20	Combining Cell Envelope Stress Reporter Assays in a Screening Approach to Identify BAM Complex Inhibitors. ACS Infectious Diseases, 2021, 7, 2250-2263.	3.8	13
21	Role of endopeptidases in peptidoglycan synthesis mediated by alternative crossâ€linking enzymes in <i>Escherichia coli</i> . EMBO Journal, 2021, 40, e108126.	7.8	13
22	Lytic transglycosylase MltG cleaves in nascent peptidoglycan and produces short glycan strands. Cell Surface, 2021, 7, 100053.	3.0	21
23	Loss of YhcB results in dysregulation of coordinated peptidoglycan, LPS and phospholipid synthesis during Escherichia coli cell growth. PLoS Genetics, 2021, 17, e1009586.	3.5	16
24	Cell morphology maintenance in Bacillus subtilis through balanced peptidoglycan synthesis and hydrolysis. Scientific Reports, 2020, 10, 17910.	3.3	20
25	Ticks Resist Skin Commensals with Immune Factor of Bacterial Origin. Cell, 2020, 183, 1562-1571.e12.	28.9	31
26	SPOR Proteins Are Required for Functionality of Class A Penicillin-Binding Proteins in Escherichia coli. MBio, 2020, 11 , .	4.1	15
27	Peptidoglycan editing provides immunity to <i>Acinetobacter baumannii</i> during bacterial warfare. Science Advances, 2020, 6, eabb5614.	10.3	44
28	Tol-Pal System and Rgs Proteins Interact to Promote Unipolar Growth and Cell Division in Sinorhizobium meliloti. MBio, 2020, 11 , .	4.1	18
29	Regulation of peptidoglycan synthesis and remodelling. Nature Reviews Microbiology, 2020, 18, 446-460.	28.6	342
30	Diffusion and capture permits dynamic coupling between treadmilling FtsZ filaments and cell division proteins. Nature Microbiology, 2020, 5, 407-417.	13.3	48
31	Structure of the Peptidoglycan Synthase Activator LpoP in Pseudomonas aeruginosa. Structure, 2020, 28, 643-650.e5.	3.3	9
32	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. PLoS Genetics, 2020, 16, e1009276.	3.5	35
33	Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multiâ€enzyme complexes in <i>Escherichia coli</i> . EMBO Journal, 2020, 39, e102246.	7.8	69
34	Distinct cytoskeletal proteins define zones of enhanced cell wall synthesis in Helicobacter pylori. ELife, 2020, 9, .	6.0	51
35	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16 , e 1009276 .		0
36	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16, e1009276.		0

#	Article	IF	CITATIONS
37	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16, e1009276.		O
38	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16 , e 1009276 .		0
39	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16, e1009276.		0
40	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16 , e 1009276 .		0
41	Studying intact bacterial peptidoglycan by proton-detected NMR spectroscopy at 100â€⁻kHz MAS frequency. Journal of Structural Biology, 2019, 206, 66-72.	2.8	30
42	<scp>d</scp> -Amino Acid Derivatives as in Situ Probes for Visualizing Bacterial Peptidoglycan Biosynthesis. Accounts of Chemical Research, 2019, 52, 2713-2722.	15.6	52
43	Does the Nucleoid Determine Cell Dimensions in Escherichia coli?. Frontiers in Microbiology, 2019, 10, 1717.	3.5	6
44	The Pseudomonas aeruginosa T6SS Delivers a Periplasmic Toxin that Disrupts Bacterial Cell Morphology. Cell Reports, 2019, 29, 187-201.e7.	6.4	82
45	<i>Borrelia burgdorferi</i> peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13498-13507.	7.1	97
46	The Cell Wall of <i>Streptococcus pneumoniae</i> . Microbiology Spectrum, 2019, 7, .	3.0	43
47	Cell wall peptidoglycan in <i>Mycobacterium tuberculosis</i> : An Achilles' heel for the TB-causing pathogen. FEMS Microbiology Reviews, 2019, 43, 548-575.	8.6	131
48	The <i>Campylobacter jejuni</i> helical to coccoid transition involves changes to peptidoglycan and the ability to elicit an immune response. Molecular Microbiology, 2019, 112, 280-301.	2.5	27
49	A Genome-Wide Helicobacter pylori Morphology Screen Uncovers a Membrane-Spanning Helical Cell Shape Complex. Journal of Bacteriology, 2019, 201, .	2.2	25
50	Coordination of capsule assembly and cell wall biosynthesis in Staphylococcus aureus. Nature Communications, 2019, 10, 1404.	12.8	66
51	Peptidoglycan Remodeling Enables Escherichia coli To Survive Severe Outer Membrane Assembly Defect. MBio, 2019, 10, .	4.1	115
52	Mechanisms of Incorporation for <scp>D</scp> -Amino Acid Probes That Target Peptidoglycan Biosynthesis. ACS Chemical Biology, 2019, 14, 2745-2756.	3.4	101
53	Plasticity of Escherichia coli cell wall metabolism promotes fitness and antibiotic resistance across environmental conditions. ELife, 2019, 8, .	6.0	72
54	Inactivation of the Monofunctional Peptidoglycan Glycosyltransferase SgtB Allows <i>Staphylococcus aureus</i> To Survive in the Absence of Lipoteichoic Acid. Journal of Bacteriology, 2019, 201, .	2.2	30

#	Article	IF	CITATIONS
55	A specialized MreB-dependent cell wall biosynthetic complex mediates the formation of stalk-specific peptidoglycan in Caulobacter crescentus. PLoS Genetics, 2019, 15, e1007897.	3.5	31
56	Optimized Protocol for the Incorporation of FDAA (HADA Labeling) for in situ Labeling of Peptidoglycan. Bio-protocol, 2019, 9, e3316.	0.4	6
57	Structure and activity of ChiX: a peptidoglycan hydrolase required for chitinase secretion by <i>Serratia marcescens</i> . Biochemical Journal, 2018, 475, 415-428.	3.7	15
58	Coupling of polymerase and carrier lipid phosphatase prevents product inhibition in peptidoglycan synthesis. Cell Surface, 2018, 2, 1-13.	3.0	23
59	Peptidoglycan in obligate intracellular bacteria. Molecular Microbiology, 2018, 107, 142-163.	2.5	68
60	Stimulation of PgdAâ€dependent peptidoglycan <i>N</i> à€deacetylation by GpsBâ€PBP A1 in <i>Listeria monocytogenes</i> . Molecular Microbiology, 2018, 107, 472-487.	2.5	16
61	The Protozoan <i>Trichomonas vaginalis</i> Targets Bacteria with Laterally Acquired NlpC/P60 Peptidoglycan Hydrolases. MBio, 2018, 9, .	4.1	22
62	Z-ring membrane anchors associate with cell wall synthases to initiate bacterial cell division. Nature Communications, 2018, 9, 5090.	12.8	60
63	Copper inhibits peptidoglycan LD-transpeptidases suppressing \hat{l}^2 -lactam resistance due to bypass of penicillin-binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10786-10791.	7.1	59
64	Two Faces of CwlM, an Essential PknB Substrate, in Mycobacterium tuberculosis. Cell Reports, 2018, 25, 57-67.e5.	6.4	52
65	Peptidoglycan editing by a specific ld-transpeptidase controls the muramidase-dependent secretion of typhoid toxin. Nature Microbiology, 2018, 3, 1243-1254.	13.3	40
66	Bacterial Cell Wall Precursor Phosphatase Assays Using Thin-layer Chromatography (TLC) and High Pressure Liquid Chromatography (HPLC). Bio-protocol, 2018, 8, e2761.	0.4	1
67	The Fluorescent D-Amino Acid NADA as a Tool to Study the Conditional Activity of Transpeptidases in Escherichia coli. Frontiers in Microbiology, 2018, 9, 2101.	3.5	26
68	Molecular Basis for Immunity Protein Recognition of a Type VII Secretion System Exported Antibacterial Toxin. Journal of Molecular Biology, 2018, 430, 4344-4358.	4.2	29
69	The cell wall hydrolase Pmp23 is important for assembly and stability of the division ring in Streptococcus pneumoniae. Scientific Reports, 2018, 8, 7591.	3.3	8
70	Induced conformational changes activate the peptidoglycan synthase PBP1B. Molecular Microbiology, 2018, 110, 335-356.	2.5	35
71	High-Resolution Analysis of the Peptidoglycan Composition in Streptomyces coelicolor. Journal of Bacteriology, 2018, 200, .	2.2	35
72	Peptidoglycan degradation machinery in <i>Clostridium difficile</i> forespore engulfment. Molecular Microbiology, 2018, 110, 390-410.	2.5	24

#	Article	IF	CITATIONS
73	Targeting the Bacterial Cytoskeleton of the Burkholderia cepacia Complex for Antimicrobial Development: A Cautionary Tale. International Journal of Molecular Sciences, 2018, 19, 1604.	4.1	4
74	Mechanical interactions between bacteria and hydrogels. Scientific Reports, 2018, 8, 10893.	3.3	64
75	Structure of the essential peptidoglycan amidotransferase MurT/GatD complex from Streptococcus pneumoniae. Nature Communications, 2018, 9, 3180.	12.8	34
76	Seven-transmembrane receptor protein RgsP and cell wall-binding protein RgsM promote unipolar growth in Rhizobiales. PLoS Genetics, 2018, 14, e1007594.	3.5	16
77	The lytic transglycosylase MltB connects membrane homeostasis andin vivofitness ofAcinetobacter baumannii. Molecular Microbiology, 2018, 109, 745-762.	2.5	38
78	Recognition of Peptidoglycan Fragments by the Transpeptidase PBP4 From Staphylococcus aureus. Frontiers in Microbiology, 2018, 9, 3223.	3.5	23
79	Robust peptidoglycan growth by dynamic and variable multi-protein complexes. Current Opinion in Microbiology, 2017, 36, 55-61.	5.1	84
80	Interplay between Penicillin-binding proteins and SEDS proteins promotes bacterial cell wall synthesis. Scientific Reports, 2017, 7, 43306.	3.3	96
81	New Aspects of the Interplay between Penicillin Binding Proteins, <i>murM</i> , and the Two-Component System CiaRH of Penicillin-Resistant Streptococcus pneumoniae Serotype 19A Isolates from Hungary. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	20
82	Morphology heterogeneity within a <i>Campylobacter jejuni</i> helical population: the use of calcofluor white to generate rodâ€shaped <i>C. jejuni</i> 81â€176 clones and the genetic determinants responsible for differences in morphology within 11168 strains. Molecular Microbiology, 2017, 104, 948-971.	2.5	14
83	Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation. Nature Microbiology, 2017, 2, 1648-1657.	13.3	103
84	Lipoteichoic acid deficiency permits normal growth but impairs virulence of Streptococcus pneumoniae. Nature Communications, 2017, 8, 2093.	12.8	52
85	Regulation of bacterial cell wall growth. FEBS Journal, 2017, 284, 851-867.	4.7	140
86	A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. ELife, 2017, 6, .	6.0	132
87	Interrupting peptidoglycan deacetylation during Bdellovibrio predator-prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts. Scientific Reports, 2016, 6, 26010.	3.3	39
88	The Redundancy of Peptidoglycan Carboxypeptidases Ensures Robust Cell Shape Maintenance in Escherichia coli. MBio, 2016, 7, .	4.1	86
89	A penicillin-binding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient <i>Acinetobacter baumannii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6228-E6237.	7.1	114
90	Site‧pecific Immobilization of the Peptidoglycan Synthase PBP1B on a Surface Plasmon Resonance Chip Surface. ChemBioChem, 2016, 17, 2250-2256.	2.6	14

#	Article	IF	Citations
91	Lyme disease and relapsing fever <i>Borrelia</i> elongate through zones of peptidoglycan synthesis that mark division sites of daughter cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9162-9170.	7.1	42
92	Subunit Arrangement in GpsB, a Regulator of Cell Wall Biosynthesis. Microbial Drug Resistance, 2016, 22, 446-460.	2.0	26
93	Accumulation of Peptidoglycan O-Acetylation Leads to Altered Cell Wall Biochemistry and Negatively Impacts Pathogenesis Factors of Campylobacter jejuni. Journal of Biological Chemistry, 2016, 291, 22686-22702.	3.4	23
94	Continuous Fluorescence Assay for Peptidoglycan Glycosyltransferases. Methods in Molecular Biology, 2016, 1440, 171-184.	0.9	10
95	Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence. Scientific Reports, 2015, 5, 16198.	3.3	30
96	The external PASTA domain of the essential serine/threonine protein kinase PknB regulates mycobacterial growth. Open Biology, 2015, 5, 150025.	3.6	22
97	Transfer of penicillin resistance from <scp><i>S</i></scp> <i>treptococcus oralis</i> to <scp><i>S</i></scp> <i>E</i> as resistance determinant. Molecular Microbiology, 2015, 97, 866-880.	2.5	23
98	The stoichiometric divisome: a hypothesis. Frontiers in Microbiology, 2015, 6, 455.	3.5	27
99	Cell age dependent concentration of Escherichia coli divisome proteins analyzed with ImageJ and ObjectJ. Frontiers in Microbiology, 2015, 6, 586.	3.5	92
100	Co-Inactivation of GlnR and CodY Regulators Impacts Pneumococcal Cell Wall Physiology. PLoS ONE, 2015, 10, e0123702.	2.5	8
101	Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus. Nature Communications, 2015, 6, 8884.	12.8	37
102	Activities and regulation of peptidoglycan synthases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150031.	4.0	138
103	The host metabolite D-serine contributes to bacterial niche specificity through gene selection. ISME Journal, 2015, 9, 1039-1051.	9.8	43
104	Two Putative Polysaccharide Deacetylases Are Required for Osmotic Stability and Cell Shape Maintenance in Bacillus anthracis. Journal of Biological Chemistry, 2015, 290, 13465-13478.	3.4	34
105	Transferred interbacterial antagonism genes augment eukaryotic innate immune function. Nature, 2015, 518, 98-101.	27.8	82
106	Backbone and side-chain 1H, 13C, and 15N NMR assignments of the N-terminal domain of Escherichia coli LpoA. Biomolecular NMR Assignments, 2015, 9, 65-69.	0.8	3
107	Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division. ELife, 2015, 4, .	6.0	154
108	Outer-membrane lipoprotein LpoB spans the periplasm to stimulate the peptidoglycan synthase PBP1B. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8197-8202.	7.1	95

#	Article	IF	Citations
109	AmiA is a penicillin target enzyme with dual activity in the intracellular pathogen Chlamydia pneumoniae. Nature Communications, 2014, 5, 4201.	12.8	27
110	Different walls for rods and balls: the diversity of peptidoglycan. Molecular Microbiology, 2014, 91, 862-874.	2.5	150
111	Peptidoglycan Id-Carboxypeptidase Pgp2 Influences Campylobacter jejuni Helical Cell Shape and Pathogenic Properties and Provides the Substrate for the dl-Carboxypeptidase Pgp1. Journal of Biological Chemistry, 2014, 289, 8007-8018.	3.4	69
112	Elongated Structure of the Outer-Membrane Activator of Peptidoglycan Synthesis LpoA: Implications for PBP1A Stimulation. Structure, 2014, 22, 1047-1054.	3.3	53
113	Structure of the LdcB LD-Carboxypeptidase Reveals the Molecular Basis of Peptidoglycan Recognition. Structure, 2014, 22, 949-960.	3.3	31
114	From models to pathogens: how much have we learned about <i><scp>S</scp>treptococcus pneumoniae</i> cell division?. Environmental Microbiology, 2013, 15, 3133-3157.	3.8	135
115	Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. Nature Communications, 2013, 4, 2856.	12.8	123
116	Colocalization and interaction between elongasome and divisome during a preparative cell division phase in <i><scp>E</scp>scherichia coli</i> <. Molecular Microbiology, 2013, 87, 1074-1087.	2.5	103
117	The physiology of bacterial cell division. Annals of the New York Academy of Sciences, 2013, 1277, 8-28.	3.8	281
118	Flow cytometryâ€based enrichment for cell shape mutants identifies multiple genes that influence <i><i><scp>H</scp>elicobacter pylori</i><morphology. 2013,="" 869-883.<="" 90,="" microbiology,="" molecular="" td=""><td>2.5</td><td>73</td></morphology.></i>	2.5	73
119	In Vitro Peptidoglycan Synthesis Assay with Lipid II Substrate. Methods in Molecular Biology, 2013, 966, 273-288.	0.9	17
120	Peptidoglycan-Modifying Enzyme Pgp1 Is Required for Helical Cell Shape and Pathogenicity Traits in Campylobacter jejuni. PLoS Pathogens, 2012, 8, e1002602.	4.7	92
121	Multiple Peptidoglycan Modification Networks Modulate Helicobacter pylori's Cell Shape, Motility, and Colonization Potential. PLoS Pathogens, 2012, 8, e1002603.	4.7	125
122	Specialized Peptidoglycan Hydrolases Sculpt the Intra-bacterial Niche of Predatory Bdellovibrio and Increase Population Fitness. PLoS Pathogens, 2012, 8, e1002524.	4.7	70
123	Osmolality-Dependent Relocation of Penicillin-Binding Protein PBP2 to the Division Site in Caulobacter crescentus. Journal of Bacteriology, 2012, 194, 3116-3127.	2.2	52
124	From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nature Reviews Microbiology, 2012, 10, 123-136.	28.6	1,062
125	Bacterial growth <i>does</i> require peptidoglycan hydrolases. Molecular Microbiology, 2012, 86, 1031-1035.	2.5	71
126	Bacterial outer membrane evolution via sporulation?. Nature Chemical Biology, 2012, 8, 14-18.	8.0	22

#	Article	IF	Citations
127	Isolation and analysis of cell wall components from Streptococcus pneumoniae. Analytical Biochemistry, 2012, 421, 657-666.	2.4	90
128	Cooperativity of peptidoglycan synthases active in bacterial cell elongation. Molecular Microbiology, 2012, 85, 179-194.	2.5	147
129	Septal and lateral wall localization of PBP5, the major D,Dâ€carboxypeptidase of <i>Escherichia coli,</i> requires substrate recognition and membrane attachment. Molecular Microbiology, 2010, 77, 300-323.	2.5	82
130	MreB Drives <i>De N ovo</i> Rod Morphogenesis in <i>Caulobacter crescentus</i> via Remodeling of the Cell Wall. Journal of Bacteriology, 2010, 192, 1671-1684.	2.2	103
131	Peptidoglycan Crosslinking Relaxation Promotes Helicobacter pylori's Helical Shape and Stomach Colonization. Cell, 2010, 141, 822-833.	28.9	240
132	Regulation of Peptidoglycan Synthesis by Outer-Membrane Proteins. Cell, 2010, 143, 1097-1109.	28.9	335
133	Architecture of peptidoglycan: more data and more models. Trends in Microbiology, 2010, 18, 59-66.	7.7	289
134	The Peptidoglycan Sacculus of <i>Myxococcus xanthus</i> Has Unusual Structural Features and Is Degraded during Glycerol-Induced Myxospore Development. Journal of Bacteriology, 2009, 191, 494-505.	2.2	89
135	Bacterial cell curvature through mechanical control of cell growth. EMBO Journal, 2009, 28, 1208-1219.	7.8	147
136	Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiology Reviews, 2008, 32, 287-306.	8.6	324
137	Peptidoglycan structure and architecture. FEMS Microbiology Reviews, 2008, 32, 149-167.	8.6	1,747
138	Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiology Reviews, 2008, 32, 259-286.	8.6	725
139	Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1714-1734.	2.6	359
140	The Essential Cell Division Protein FtsN Interacts with the Murein (Peptidoglycan) Synthase PBP1B in Escherichia coli. Journal of Biological Chemistry, 2007, 282, 36394-36402.	3.4	140
141	Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli. Molecular Microbiology, 2006, 61, 675-690.	2.5	173
142	The prokaryotic cytoskeleton: a putative target for inhibitors and antibiotics?. Applied Microbiology and Biotechnology, 2006, 73, 37-47.	3.6	112
143	In Vitro Synthesis of Cross-linked Murein and Its Attachment to Sacculi by PBP1A from Escherichia coli. Journal of Biological Chemistry, 2006, 281, 26985-26993.	3.4	114
144	In Vitro Murein (Peptidoglycan) Synthesis by Dimers of the Bifunctional Transglycosylase-Transpeptidase PBP1B from Escherichia coli. Journal of Biological Chemistry, 2005, 280, 38096-38101.	3.4	135

#	Article	IF	CITATION
145	Crystal Structure of MltA from Escherichia coli Reveals a Unique Lytic Transglycosylase Fold. Journal of Molecular Biology, 2005, 352, 1068-1080.	4.2	56
146	Murein (Peptidoglycan) Binding Property of the Essential Cell Division Protein FtsN from Escherichia coli. Journal of Bacteriology, 2004, 186, 6728-6737.	2.2	117
147	Peptidoglycan <i>N</i> -Acetylglucosamine Deacetylase, a Putative Virulence Factor in <i>Streptococcus pneumoniae</i> . Infection and Immunity, 2002, 70, 7176-7178.	2.2	109
148	Identification of the teichoic acid phosphorylcholine esterase in Streptococcus pneumoniae. Molecular Microbiology, 2001, 39, 1610-1622.	2.5	61
149	The pgdA Gene Encodes for a PeptidoglycanN-Acetylglucosamine Deacetylase in Streptococcus pneumoniae. Journal of Biological Chemistry, 2000, 275, 20496-20501.	3.4	224
150	Demonstration of Molecular Interactions between the Murein Polymerase PBP1B, the Lytic Transglycosylase MltA, and the Scaffolding Protein MipA of Escherichia coli. Journal of Biological Chemistry, 1999, 274, 6726-6734.	3.4	160
151	Antibacterial potency of type VI amidase effector toxins is dependent on substrate topology and cellular context. ELife, 0, 11 , .	6.0	3