List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7376305/publications.pdf Version: 2024-02-01

ALEXANDRA CORREIA

#	Article	IF	CITATIONS
1	InÂvitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials, 2017, 121, 97-108.	5.7	296
2	Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. Journal of Controlled Release, 2016, 232, 29-41.	4.8	168
3	Protein Coating of DNA Nanostructures for Enhanced Stability and Immunocompatibility. Advanced Healthcare Materials, 2017, 6, 1700692.	3.9	166
4	A Hydrogenâ€Bonded Extracellular Matrixâ€Mimicking Bactericidal Hydrogel with Radical Scavenging and Hemostatic Function for pHâ€Responsive Wound Healing Acceleration. Advanced Healthcare Materials, 2021, 10, e2001122.	3.9	142
5	New Microsatellite Multiplex PCR for Candida albicans Strain Typing Reveals Microevolutionary Changes. Journal of Clinical Microbiology, 2005, 43, 3869-3876.	1.8	137
6	Candida bracarensis sp. nov., a novel anamorphic yeast species phenotypically similar to Candida glabrata. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 313-317.	0.8	123
7	Bacterial Cellulose: Long-Term Biocompatibility Studies. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1339-1354.	1.9	113
8	Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy. Acta Biomaterialia, 2017, 48, 238-246.	4.1	109
9	Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. International Journal of Pharmaceutics, 2017, 533, 156-168.	2.6	93
10	Drugâ€Loaded Multifunctional Nanoparticles Targeted to the Endocardial Layer of the Injured Heart Modulate Hypertrophic Signaling. Small, 2017, 13, 1701276.	5.2	82
11	Metabolic control of T cell immune response through glycans in inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4651-E4660.	3.3	77
12	Dual rosslinked Dynamic Hydrogel Incorporating {Mo ₁₅₄ } with pH and NIR Responsiveness for Chemoâ€Photothermal Therapy. Advanced Materials, 2021, 33, e2007761.	11.1	73
13	Limited Role of Secreted Aspartyl Proteinases Sap1 to Sap6 in <i>Candida albicans</i> Virulence and Host Immune Response in Murine Hematogenously Disseminated Candidiasis. Infection and Immunity, 2010, 78, 4839-4849.	1.0	69
14	pH and Reactive Oxygen Speciesâ€Sequential Responsive Nanoâ€inâ€Micro Composite for Targeted Therapy of Inflammatory Bowel Disease. Advanced Functional Materials, 2018, 28, 1806175.	7.8	68
15	<p>Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 4961-4974.	3.3	67
16	Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration. International Journal of Pharmaceutics, 2018, 536, 241-250.	2.6	65
17	Participation of Candida albicans Transcription Factor RLM1 in Cell Wall Biogenesis and Virulence. PLoS ONE, 2014, 9, e86270.	1.1	64
18	Nutlinâ€3a and Cytokine Coâ€loaded Spermineâ€Modified Acetalated Dextran Nanoparticles for Cancer Chemoâ€lmmunotherapy. Advanced Functional Materials, 2017, 27, 1703303.	7.8	61

#	Article	IF	CITATIONS
19	Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique. Acta Biomaterialia, 2021, 121, 566-578.	4.1	59
20	Preparation and Characterization of Dentin Phosphophorynâ€Derived Peptideâ€Functionalized Lignin Nanoparticles for Enhanced Cellular Uptake. Small, 2019, 15, e1901427.	5.2	57
21	Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & amp; Interfaces, 2020, 12, 6899-6909.	10 Tf 50 6 4.0	67 Td (seba 57
22	Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cells. ACS Applied Materials & Interfaces, 2015, 7, 23197-23204.	4.0	55
23	A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors. Nano Research, 2015, 8, 1505-1521.	5.8	54
24	Biomimetic Engineering Using Cancer Cell Membranes for Designing Compartmentalized Nanoreactors with Organelleâ€Like Functions. Advanced Materials, 2017, 29, 1605375.	11.1	54
25	Engineered Multifunctional Albuminâ€Decorated Porous Silicon Nanoparticles for FcRn Translocation of Insulin. Small, 2018, 14, e1800462.	5.2	53
26	Multifunctional 3Dâ€Printed Patches for Longâ€Term Drug Release Therapies after Myocardial Infarction. Advanced Functional Materials, 2020, 30, 2003440.	7.8	53
27	Receptor-Mediated Surface Charge Inversion Platform Based on Porous Silicon Nanoparticles for Efficient Cancer Cell Recognition and Combination Therapy. ACS Applied Materials & Interfaces, 2017, 9, 10034-10046.	4.0	51
28	Structural analysis and potential immunostimulatory activity of Nannochloropsis oculata polysaccharides. Carbohydrate Polymers, 2019, 222, 114962.	5.1	51
29	Microfluidic fabrication and characterization of Sorafenib-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery. International Journal of Pharmaceutics, 2020, 581, 119275.	2.6	50
30	SYBR green as a fluorescent probe to evaluate the biofilm physiological state of <i>Staphylococcus epidermidis</i> , using flow cytometry. Canadian Journal of Microbiology, 2011, 57, 850-856.	0.8	49
31	Biocompatibility of a self-assembled glycol chitosan nanogel. Toxicology in Vitro, 2015, 29, 638-646.	1.1	47
32	LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. International Journal of Pharmaceutics, 2021, 597, 120346.	2.6	45
33	Bioengineered Porous Silicon Nanoparticles@Macrophages Cell Membrane as Composite Platforms for Rheumatoid Arthritis. Advanced Functional Materials, 2018, 28, 1801355.	7.8	44
34	A Virusâ€Mimicking pHâ€Responsive Acetalated Dextranâ€Based Membraneâ€Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics. Advanced Functional Materials, 2019, 29, 1905352.	7.8	43
35	Angiopep2-functionalized polymersomes for targeted doxorubicin delivery to glioblastoma cells. International Journal of Pharmaceutics, 2016, 511, 794-803.	2.6	42
36	A Nanoâ€inâ€Nano Vector: Merging the Best of Polymeric Nanoparticles and Drug Nanocrystals. Advanced Functional Materials, 2017, 27, 1604508.	7.8	42

#	Article	IF	CITATIONS
37	Surface modification of acetaminophen particles by atomic layer deposition. International Journal of Pharmaceutics, 2017, 525, 160-174.	2.6	40
38	Systematic inÂvitro and inÂvivo study on porous silicon to improve the oral bioavailability of celecoxib. Biomaterials, 2015, 52, 44-55.	5.7	38
39	Farnesol, a Fungal Quorum-Sensing Molecule Triggers Candida Albicans Morphological Changes by Downregulating the Expression of Different Secreted Aspartyl Proteinase Genes. Open Microbiology Journal, 2011, 5, 119-126.	0.2	36
40	Targetability of hyaluronic acid nanogel to cancer cells: In vitro and in vivo studies. European Journal of Pharmaceutical Sciences, 2017, 104, 102-113.	1.9	35
41	Multifunctional Nanotube–Mucoadhesive Poly(methyl vinyl etherâ€ <i>co</i> â€maleic) Tj ETQq1 1 0.784314 Delivery. Advanced Healthcare Materials, 2017, 6, 1700629.	rgBT /Over 3.9	lock 10 Tf 50 35
42	Glycans as Immune Checkpoints: Removal of Branched N-glycans Enhances Immune Recognition Preventing Cancer Progression. Cancer Immunology Research, 2020, 8, 1407-1425.	1.6	33
43	Immunostimulation and Immunosuppression: Nanotechnology on the Brink. Small Methods, 2018, 2, 1700347.	4.6	32
44	Radiolabeled Molecular Imaging Probes for the In Vivo Evaluation of Cellulose Nanocrystals for Biomedical Applications. Biomacromolecules, 2019, 20, 674-683.	2.6	32
45	Systematic in vitro biocompatibility studies of multimodal cellulose nanocrystal and lignin nanoparticles. Journal of Biomedical Materials Research - Part A, 2020, 108, 770-783.	2.1	32
46	Study of Molecular Epidemiology of Candidiasis in Portugal by PCR Fingerprinting of Candida Clinical Isolates. Journal of Clinical Microbiology, 2004, 42, 5899-5903.	1.8	31
47	Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticles. Journal of Controlled Release, 2017, 249, 111-122.	4.8	31
48	Study of New Therapeutic Strategies to Combat Breast Cancer Using Drug Combinations. Biomolecules, 2018, 8, 175.	1.8	31
49	Reserve, structural and extracellular polysaccharides of Chlorella vulgaris: A holistic approach. Algal Research, 2020, 45, 101757.	2.4	30
50	Cardiac Actions of a Small Molecule Inhibitor Targeting GATA4–NKX2-5 Interaction. Scientific Reports, 2018, 8, 4611.	1.6	29
51	Controlled Dissolution of Griseofulvin Solid Dispersions from Electrosprayed Enteric Polymer Micromatrix Particles: Physicochemical Characterization and <i>in Vitro</i> Evaluation. Molecular Pharmaceutics, 2015, 12, 2254-2264.	2.3	28
52	Targeted Reinforcement of Macrophage Reprogramming Toward M2 Polarization by IL-4-Loaded Hyaluronic Acid Particles. ACS Omega, 2018, 3, 18444-18455.	1.6	28
53	In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 635-642.	2.0	25
54	DODAB:monoolein liposomes containing Candida albicans cell wall surface proteins: A novel adjuvant and delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 190-200.	2.0	25

#	Article	IF	CITATIONS
55	Influence of Surface Chemistry on Ibuprofen Adsorption and Confinement in Mesoporous Silicon Microparticles. Langmuir, 2016, 32, 13020-13029.	1.6	25
56	Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weakâ€Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors. Advanced Materials, 2022, 34, e2108012.	11.1	25
57	Increased number of glutamine repeats in the C-terminal of Candida albicans Rlm1p enhances the resistance to stress agents. Antonie Van Leeuwenhoek, 2009, 96, 395-404.	0.7	24
58	Plasmacytoid and conventional dendritic cells are early producers of ILâ€12 in <i>Neospora caninum</i> â€infected mice. Immunology and Cell Biology, 2010, 88, 79-86.	1.0	24
59	Protective effect of antigen delivery using monoolein-based liposomes in experimental hematogenously disseminated candidiasis. Acta Biomaterialia, 2016, 39, 133-145.	4.1	24
60	Engineered antibody-functionalized porous silicon nanoparticles for therapeutic targeting of pro-survival pathway in endogenous neuroblasts after stroke. Biomaterials, 2020, 227, 119556.	5.7	23
61	One-step microfluidics production of enzyme-loaded liposomes for the treatment of inflammatory diseases. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111556.	2.5	23
62	Functionalized Bacterial Cellulose Microparticles for Drug Delivery in Biomedical Applications. Current Pharmaceutical Design, 2019, 25, 3692-3701.	0.9	23
63	Virulence Attenuation of Candida albicans Genetic Variants Isolated from a Patient with a Recurrent Bloodstream Infection. PLoS ONE, 2010, 5, e10155.	1.1	22
64	Deficits in Endogenous Adenosine Formation by Ecto-5′-Nucleotidase/CD73 Impair Neuromuscular Transmission and Immune Competence in Experimental Autoimmune Myasthenia Gravis. Mediators of Inflammation, 2015, 2015, 1-16.	1.4	20
65	Predominant role of interferon- \hat{I}^3 in the host protective effect of CD8+ T cells against Neospora caninum infection. Scientific Reports, 2015, 5, 14913.	1.6	18
66	Biocompatibility of a Self-Assembled Crosslinkable Hyaluronic Acid Nanogel. Macromolecular Bioscience, 2016, 16, 1610-1620.	2.1	18
67	Gelatinâ€Lysozyme Nanofibrils Electrospun Patches with Improved Mechanical, Antioxidant, and Bioresorbability Properties for Myocardial Regeneration Applications. Advanced Functional Materials, 2022, 32, .	7.8	18
68	Mucosal and systemic T cell response in mice intragastrically infected with Neospora caninum tachyzoites. Veterinary Research, 2013, 44, 69.	1.1	17
69	Immune response in the adipose tissue of lean mice infected with the protozoan parasite <i>Neospora caninum</i> . Immunology, 2015, 145, 242-257.	2.0	17
70	Staphylococcus epidermidis Biofilm-Released Cells Induce a Prompt and More Marked In vivo Inflammatory-Type Response than Planktonic or Biofilm Cells. Frontiers in Microbiology, 2016, 7, 1530.	1.5	16
71	In Vivo Imaging of Glycol Chitosanâ€Based Nanogel Biodistribution. Macromolecular Bioscience, 2016, 16, 432-440.	2.1	16
72	Superfast and controllable microfluidic inking of anti-inflammatory melanin-like nanoparticles inspired by cephalopods. Materials Horizons, 2020, 7, 1573-1580.	6.4	16

#	Article	IF	CITATIONS
73	Protective effect of intranasal immunization with <i><scp>N</scp>eospora caninum</i> membrane antigens against murine neosporosis established through the gastrointestinal tract. Immunology, 2014, 141, 256-267.	2.0	15
74	A multifunctional nanocomplex for enhanced cell uptake, endosomal escape and improved cancer therapeutic effect. Nanomedicine, 2017, 12, 1401-1420.	1.7	15
75	Cell Membrane-Based Nanoreactor To Mimic the Bio-Compartmentalization Strategy of a Cell. ACS Biomaterials Science and Engineering, 2018, 4, 1471-1478.	2.6	15
76	A live auxotrophic vaccine confers mucosal immunity and protection against lethal pneumonia caused by Pseudomonas aeruginosa. PLoS Pathogens, 2020, 16, e1008311.	2.1	15
77	Enrichment of IFN-Î ³ producing cells in different murine adipose tissue depots upon infection with an apicomplexan parasite. Scientific Reports, 2016, 6, 23475.	1.6	15
78	siRNA Inhibition of Endocytic Pathways to Characterize the Cellular Uptake Mechanisms of Folate-Functionalized Glycol Chitosan Nanogels. Molecular Pharmaceutics, 2015, 12, 1970-1979.	2.3	14
79	Utilization of green formulation technique and efficacy estimation on cell line studies for dual anticancer drug therapy with niosomes. International Journal of Pharmaceutics, 2019, 572, 118764.	2.6	13
80	Intracellular Delivery of Budesonide and Polydopamine Co‣oaded in Endosomolytic Poly(butyl) Tj ETQq0 0 C from M1 to M2. Advanced Therapeutics, 2021, 4, 2000058.) rgBT /Over 1.6	lock 10 Tf 50 13
81	Investigation of silicon nanoparticles produced by centrifuge chemical vapor deposition for applications in therapy and diagnostics. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 254-265.	2.0	13
82	Impact of growth medium salinity on galactoxylan exopolysaccharides of Porphyridium purpureum. Algal Research, 2021, 59, 102439.	2.4	12
83	Preparation and biological evaluation of ethionamide-mesoporous silicon nanoparticles against Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 403-405.	1.0	11
84	Nanoparticle effect on neutrophil produced myeloperoxidase. PLoS ONE, 2018, 13, e0191445.	1.1	11
85	Influence of Cell Membrane Wrapping on the Cellâ^Porous Silicon Nanoparticle Interactions. Advanced Healthcare Materials, 2020, 9, e2000529.	3.9	11
86	Mucosal immunization confers long-term protection against intragastrically established Neospora caninum infection. Vaccine, 2016, 34, 6250-6258.	1.7	10
87	Assessing in vivo digestibility and effects on immune system of sheep fed alfalfa hay supplemented with a fixed amount of Ulva rigida and Gracilaria vermiculophylla. Journal of Applied Phycology, 2017, 29, 1057-1067.	1.5	10
88	Inflammatory Cell Recruitment in Candida glabrata Biofilm Cell-Infected Mice Receiving Antifungal Chemotherapy. Journal of Clinical Medicine, 2019, 8, 142.	1.0	10
89	Dectin-1-Mediated Production of Pro-Inflammatory Cytokines Induced by Yeast Î ² -Glucans in Bovine Monocytes. Frontiers in Immunology, 2021, 12, 689879.	2.2	10
90	Poly- <i>N</i> -Acetylglucosamine Production by Staphylococcus epidermidis Cells Increases Their <i>In Vivo</i> Proinflammatory Effect. Infection and Immunity, 2016, 84, 2933-2943.	1.0	9

#	Article	IF	CITATIONS
91	Genetic relatedness and antifungal susceptibility profile of <i>Candida albicans</i> isolates from fungaemia patients. Medical Mycology, 2011, 49, 248-252.	0.3	8
92	Characterization of Myeloid Cellular Populations in Mesenteric and Subcutaneous Adipose Tissue of Holstein-Friesian Cows. Scientific Reports, 2020, 10, 1771.	1.6	8
93	Effect of Zinc Source and Exogenous Enzymes Supplementation on Zinc Status in Dogs Fed High Phytate Diets. Animals, 2020, 10, 400.	1.0	7
94	Vaccines in Congenital Toxoplasmosis: Advances and Perspectives. Frontiers in Immunology, 2020, 11, 621997.	2.2	7
95	Inhibiting Phase Transfer of Protein Nanoparticles by Surface Camouflage–A Versatile and Efficient Protein Encapsulation Strategy. Nano Letters, 2021, 21, 9458-9467.	4.5	7
96	Involvement of the Iron-Regulated Loci <i>hts</i> and <i>fhuC</i> in Biofilm Formation and Survival of Staphylococcus epidermidis within the Host. Microbiology Spectrum, 2022, 10, e0216821.	1.2	7
97	Host defense mechanisms in invasive candidiasis originating in the GI tract. Expert Review of Anti-Infective Therapy, 2008, 6, 441-445.	2.0	6
98	Identification of distinct haemocyte populations from the freshwater bivalves swan mussel (<i>Anodontacygnea</i>) and duck mussel (<i>Anodontaanatina</i>) using wheat-germ agglutinin. Canadian Journal of Zoology, 2017, 95, 937-947.	0.4	6
99	T cells in mesenteric and subcutaneous adipose tissue of Holstein-Friesian cows. Scientific Reports, 2019, 9, 3413.	1.6	6
100	Sequential Antifouling Surface for Efficient Modulation of the Nanoparticle–Cell Interactions in Proteinâ€Rich Environments. Advanced Therapeutics, 2018, 1, 1800013.	1.6	5
101	Salt pan brine water as a sustainable source of sulphated polysaccharides with immunostimulatory activity. International Journal of Biological Macromolecules, 2019, 133, 235-242.	3.6	5
102	Siderophore-Mediated Iron Acquisition Plays a Critical Role in Biofilm Formation and Survival of Staphylococcus epidermidis Within the Host. Frontiers in Medicine, 2021, 8, 799227.	1.2	5
103	Unraveling the Uptake Mechanisms of Mannan Nanogel in Boneâ€Marrowâ€Đerived Macrophages. Macromolecular Bioscience, 2012, 12, 1172-1180.	2.1	4
104	Potential of mannan or dextrin nanogels as vaccine carrier/adjuvant systems. Journal of Bioactive and Compatible Polymers, 2016, 31, 453-466.	0.8	4
105	Interferon-Î ³ -dependent protection against Neospora caninum infection conferred by mucosal immunization in IL-12/IL-23 p40-deficient mice. Vaccine, 2018, 36, 4890-4896.	1.7	4
106	Automatic methodologies to perform loading and release assays of anticancer drugs from mesoporous silicon nanoparticles. Talanta, 2019, 196, 277-283.	2.9	2
107	Drug Delivery: A Nanoâ€inâ€Nano Vector: Merging the Best of Polymeric Nanoparticles and Drug Nanocrystals (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
108	Nanoreactors: Biomimetic Engineering Using Cancer Cell Membranes for Designing Compartmentalized Nanoreactors with Organelle‣ike Functions (Adv. Mater. 11/2017). Advanced Materials, 2017, 29, .	11.1	1

#	Article	IF	CITATIONS
109	Antitumor Therapeutics: A Virusâ€Mimicking pHâ€Responsive Acetalated Dextranâ€Based Membraneâ€Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics (Adv. Funct. Mater.) Tj ETQq1 1 0.784	31∕48rgBT	/Overlock 10
110	Modulation of Leptin and Leptin Receptor Expression in Mice Acutely Infected with Neospora caninum. Pathogens, 2020, 9, 587.	1.2	1
111	Protective Effect against Neosporosis Induced by Intranasal Immunization with Neospora caninum Membrane Antigens Plus Carbomer-Based Adjuvant. Vaccines, 2022, 10, 925.	2.1	1
112	New insights into ethionamide metabolism: influence of oxidized methionine on its degradation path. RSC Medicinal Chemistry, 2020, 11, 1423-1428.	1.7	0
113	Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weakâ€Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors (Adv. Mater. 9/2022). Advanced Materials, 2022, 34, .	11.1	0