
Johannes Helder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7376201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic Reconstruction of the Introduction and Diversification of Golden Potato Cyst Nematode Populations in Indonesia. Phytopathology, 2022, 112, 396-403.	2.2	0
2	Characterization of the Habitat- and Season-Independent Increase in Fungal Biomass Induced by the Invasive Giant Goldenrod and Its Impact on the Fungivorous Nematode Community. Microorganisms, 2021, 9, 437.	3.6	3
3	On the balance between practical relevance and standardization - Testing the effects of zinc and pyrene on native nematode communities in soil microcosms. Science of the Total Environment, 2021, 788, 147742.	8.0	7
4	On the role of dauer in the adaptation of nematodes to a parasitic lifestyle. Parasites and Vectors, 2021, 14, 554.	2.5	11
5	Distribution, DNA barcoding and genetic diversity of potato cyst nematodes in Indonesia. European Journal of Plant Pathology, 2020, 158, 363-380.	1.7	11
6	Nematodes as evolutionary commuters between marine, freshwater and terrestrial habitats. Biological Journal of the Linnean Society, 2019, 128, 756-767.	1.6	39
7	A Worm's World: Ecological Flexibility Pays Off for Free-Living Nematodes in Sediments and Soils. BioScience, 2019, 69, 867-876.	4.9	41
8	Conventional and organic soil management as divergent drivers of resident and active fractions of major soil food web constituents. Scientific Reports, 2019, 9, 13521.	3.3	54
9	Shifts in the Active Rhizobiome Paralleling Low Meloidogyne chitwoodi Densities in Fields Under Prolonged Organic Soil Management. Frontiers in Plant Science, 2019, 10, 1697.	3.6	24
10	Parallel adaptations and common host cell responses enabling feeding of obligate and facultative plant parasitic nematodes. Plant Journal, 2018, 93, 686-702.	5.7	50
11	The differential impact of a native and a nonâ€native ragwort species (Senecioneae) on the first and second trophic level of the rhizosphere food web. Oikos, 2017, 126, 1790-1803.	2.7	10
12	Feeding preference as a main determinant of microscale patchiness among terrestrial nematodes. Molecular Ecology Resources, 2017, 17, 1257-1270.	4.8	33
13	The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes. Genes, 2017, 8, 287.	2.4	19
14	Disparate gain and loss of parasitic abilities among nematode lineages. PLoS ONE, 2017, 12, e0185445.	2.5	50
15	Organic farming practices result in compositional shifts in nematode communities that exceed crop-related changes. Applied Soil Ecology, 2016, 98, 254-260.	4.3	44
16	Evolution of Plant Parasitism in the Phylum Nematoda. Annual Review of Phytopathology, 2015, 53, 289-310.	7.8	51
17	Characterisation of the transcriptome of Aphelenchoides besseyi and identification of a GHF 45 cellulase. Nematology, 2014, 16, 99-107.	0.6	14
18	Comparison of two short DNA barcoding loci (COI and COII) and two longer ribosomal DNA genes (SSU & LSU rRNA) for specimen identification among quarantine root-knot nematodes (Meloidogyne spp.) and their close relatives. European Journal of Plant Pathology, 2014, 140, 97-110.	1.7	57

JOHANNES HELDER

#	Article	IF	CITATIONS
19	Selective alteration of soil food web components by invasive giant goldenrod <i>Solidago gigantea</i> in two distinct habitat types. Oikos, 2014, 123, 837-845.	2.7	20
20	Release of isothiocyanates does not explain the effects of biofumigation with Indian mustard cultivars on nematode assemblages. Soil Biology and Biochemistry, 2014, 68, 200-207.	8.8	41
21	Top 10 plantâ€parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 2013, 14, 946-961.	4.2	1,454
22	Description of Meloidoderita salina sp. n. (Nematoda, Sphaeronematidae) from a micro-tidal salt marsh atÂMont-Saint-Michel Bay in France. ZooKeys, 2012, 249, 1-26.	1.1	10
23	Small Subunit Ribosomal DNA-Based Phylogenetic Analysis of Foliar Nematodes (<i>Aphelenchoides</i> spp.) and Their Quantitative Detection in Complex DNA Backgrounds. Phytopathology, 2012, 102, 1153-1160.	2.2	51
24	SSU Ribosomal DNA-Based Monitoring of Nematode Assemblages Reveals Distinct Seasonal Fluctuations within Evolutionary Heterogeneous Feeding Guilds. PLoS ONE, 2012, 7, e47555.	2.5	62
25	Ecology and Evolution of Soil Nematode Chemotaxis. Journal of Chemical Ecology, 2012, 38, 615-628.	1.8	118
26	Phylogeny and Evolution of Nematodes. , 2011, , 45-59.		12
27	A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology, 2009, 11, 927-950.	0.6	442
28	Dynamics in the tomato root transcriptome on infection with the potato cyst nematode <i>Globodera rostochiensis</i> . Molecular Plant Pathology, 2009, 10, 487-500.	4.2	34
29	Small subunit ribosomal DNA-based phylogeny of basal Chromadoria (Nematoda) suggests that transitions from marine to terrestrial habitats (and vice versa) require relatively simple adaptations. Molecular Phylogenetics and Evolution, 2008, 48, 758-763.	2.7	54
30	A ribosomal DNAâ€based framework for the detection and quantification of stressâ€sensitive nematode families in terrestrial habitats. Molecular Ecology Resources, 2008, 8, 23-34.	4.8	123
31	Expression of Two Functionally Distinct Plant Endo-β-1,4-Glucanases Is Essential for the Compatible Interaction Between Potato Cyst Nematode and Its Hosts. Molecular Plant-Microbe Interactions, 2008, 21, 791-798.	2.6	25
32	Structural and functional characterization of a novel, host penetration-related pectate lyase from the potato cyst nematode Globodera rostochiensis. Molecular Plant Pathology, 2007, 8, 293-305.	4.2	37
33	Phylum-Wide Analysis of SSU rDNA Reveals Deep Phylogenetic Relationships among Nematodes and Accelerated Evolution toward Crown Clades. Molecular Biology and Evolution, 2006, 23, 1792-1800.	8.9	867
34	Origin, distribution and 3D-modeling of Gr-EXPB1, an expansin from the potato cyst nematodeGlobodera rostochiensis. FEBS Letters, 2005, 579, 2451-2457.	2.8	56
35	Feeding cell development by cyst and root-knot nematodes involves a similar early, local and transient activation of a specific auxin-inducible promoter element. Molecular Plant Pathology, 2004, 5, 343-346.	4.2	118
36	A nematode expansin acting on plants. Nature, 2004, 427, 30-30.	27.8	180

3

JOHANNES HELDER

#	Article	IF	CITATIONS
37	Both Induction and Morphogenesis of Cyst Nematode Feeding Cells Are Mediated by Auxin. Molecular Plant-Microbe Interactions, 2000, 13, 1121-1129.	2.6	182
38	Degradation of plant cell walls by a nematode. Nature, 2000, 406, 36-37.	27.8	167
39	Naturally Induced Secretions of the Potato Cyst Nematode Co-stimulate the Proliferation of Both Tobacco Leaf Protoplasts and Human Peripheral Blood Mononuclear Cells. Molecular Plant-Microbe Interactions, 1999, 12, 872-881.	2.6	37
40	Genomic organization of four β-1,4-endoglucanase genes in plant-parasitic cyst nematodes and its evolutionary implications. Gene, 1998, 220, 61-70.	2.2	128