Shosei Kishida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7374952/publications.pdf

Version: 2024-02-01

147801 128289 5,434 60 31 60 citations h-index g-index papers 60 60 60 5618 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Intercellular signaling between ameloblastoma and osteoblasts. Biochemistry and Biophysics Reports, 2022, 30, 101233.	1.3	2
2	The Semaphorin 3A-AKT axis-mediated cell proliferation in salivary gland morphogenesis and adenoid cystic carcinoma pathogenesis. Pathology Research and Practice, 2022, 236, 153991.	2.3	4
3	Comparative Genotoxicity and Mutagenicity of Cigarette, Cigarillo, and Shisha Tobacco Products in Epithelial and Cardiac Cells. Toxicological Sciences, 2021, 184, 67-82.	3.1	3
4	Molecular biological findings of ameloblastoma. Japanese Dental Science Review, 2021, 57, 27-32.	5.1	21
5	Cytotoxicity and Genotoxicity of E-Cigarette Generated Aerosols Containing Diverse Flavoring Products and Nicotine in Oral Epithelial Cell Lines. Toxicological Sciences, 2021, 179, 220-228.	3.1	22
6	Bioengineering the ameloblastoma tumour to study its effect on bone nodule formation. Scientific Reports, 2021, 11, 24088.	3.3	11
7	The TRPV4-AKT axis promotes oral squamous cell carcinoma cell proliferation via CaMKII activation. Laboratory Investigation, 2020, 100, 311-323.	3.7	37
8	TBC1D1 interacting proteins, VPS13A and VPS13C, regulate GLUT4 homeostasis in C2C12 myotubes. Scientific Reports, 2020, 10, 17953.	3.3	11
9	SPOCK1 is a novel inducer of epithelial to mesenchymal transition in drug-induced gingival overgrowth. Scientific Reports, 2020, 10, 9785.	3.3	17
10	Ameloblastoma cell lines derived from different subtypes demonstrate distinct developmental patterns in a novel animal experimental model. Journal of Applied Oral Science, 2020, 28, e20190558.	1.8	2
11	Cytotoxic Effects of Betel Quid and Areca Nut Aqueous Extracts on Mouse Fibroblast, Human Mouth-Ordinary-Epithelium 1 and Human Oral Squamous Cell Carcinoma Cell Lines. Asian Pacific Journal of Cancer Prevention, 2020, 21, 1005-1009.	1.2	5
12	Effect of cigarette smoke extract on mitochondrial heme-metabolism: An in vitro model of oral cancer progression. Toxicology in Vitro, 2019, 60, 336-346.	2.4	10
13	Elucidation of the Interleukin 12 Production Mechanism during Intracellular Bacterial Infection in Amberjack, Seriola dumerili. Infection and Immunity, 2019, 87, .	2.2	2
14	Wnt5bâ€essociated exosomes promote cancer cell migration and proliferation. Cancer Science, 2017, 108, 42-52.	3.9	113
15	Fibroblasts promote the collective invasion of ameloblastoma tumor cells in a 3D coculture model. FEBS Open Bio, 2017, 7, 2000-2007.	2.3	17
16	Therapeutic potential of ghrelin and des-acyl ghrelin against chemotherapy-induced cardiotoxicity. Endocrine Journal, 2017, 64, S35-S39.	1.6	9
17	Afatinib radiosensitizes head and neck squamous cell carcinoma cells by targeting cancer stem cells. Oncotarget, 2017, 8, 20961-20973.	1.8	41
18	NEU3 inhibitory effect of naringin suppresses cancer cell growth by attenuation of EGFR signaling through GM3 ganglioside accumulation. European Journal of Pharmacology, 2016, 782, 21-29.	3.5	53

#	Article	IF	CITATIONS
19	A Conserved Function in Phosphatidylinositol Metabolism for Mammalian Vps13 Family Proteins. PLoS ONE, 2015, 10, e0124836.	2.5	27
20	Immunoreactivity of Wnt5a, Fzd2, Fzd6, and Ryk in glioblastoma: evaluative methodology for DAB chromogenic immunostaining. Brain Tumor Pathology, 2014, 31, 85-93.	1.7	22
21	Ryk is essential for Wnt-5a-dependent invasiveness in human glioma. Journal of Biochemistry, 2014, 156, 29-38.	1.7	31
22	Regulation of IL-6 and IL-8 production by reciprocal cell-to-cell interactions between tumor cells and stromal fibroblasts through IL-1 \hat{l} ± in ameloblastoma. Biochemical and Biophysical Research Communications, 2014, 451, 491-496.	2.1	22
23	A novel ameloblastoma cell line (AM-3) secretes MMP-9 in response to Wnt-3a and induces osteoclastogenesis. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2013, 115, 780-788.	0.4	25
24	Subcellular localization and putative role of VPS13A/chorein in dopaminergic neuronal cells. Biochemical and Biophysical Research Communications, 2012, 419, 511-516.	2.1	19
25	Wntâ€5a signaling is correlated with infiltrative activity in human glioma by inducing cellular migration and MMPâ€2. Cancer Science, 2011, 102, 540-548.	3.9	114
26	Immortalization and characterization of normal oral epithelial cells without using HPV and SV40 genes. Oral Science International, 2011, 8, 20-28.	0.7	13
27	Identification of 13 novel mutations including a retrotransposal insertion in SLC25A13 gene and frequency of 30 mutations found in patients with citrin deficiency. Journal of Human Genetics, 2008, 53, 534-545.	2.3	107
28	Dvl regulates endo- and exocytotic processes through binding to synaptotagmin. Genes To Cells, 2007, 12, 49-61.	1.2	25
29	Multiplicity of the interactions of Wnt proteins and their receptors. Cellular Signalling, 2007, 19, 659-671.	3.6	249
30	Oog1, an oocyte-specific protein, interacts with Ras and Ras-signaling proteins during early embryogenesis. Biochemical and Biophysical Research Communications, 2006, 343, 1105-1112.	2.1	14
31	Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Experimental and Molecular Medicine, 2006, 38, 1-10.	7.7	191
32	Ubiquitin-Interacting Motifs of Epsin Are Involved in the Regulation of Insulin-Dependent Endocytosis. Journal of Biochemistry, 2005, 137, 355-364.	1.7	32
33	Wnt-3a and Dvl Induce Neurite Retraction by Activating Rho-Associated Kinase. Molecular and Cellular Biology, 2004, 24, 4487-4501.	2.3	120
34	Synaptic scaffolding molecule interacts with Axin. Journal of Neurochemistry, 2004, 90, 332-339.	3.9	20
35	Sall1, a causative gene for Townes–Brocks syndrome, enhances the canonical Wnt signaling by localizing to heterochromatin. Biochemical and Biophysical Research Communications, 2004, 319, 103-113.	2.1	58
36	Identification and characterization of a novel Dvlâ€binding protein that suppresses Wnt signalling pathway. Genes To Cells, 2003, 8, 1005-1017.	1.2	65

#	Article	IF	Citations
37	Siah-1 Facilitates Ubiquitination and Degradation of Synphilin-1. Journal of Biological Chemistry, 2003, 278, 51504-51514.	3.4	97
38	Nuclear Localization of Duplin, a \hat{l}^2 -Catenin-binding Protein, Is Essential for Its Inhibitory Activity on the Wnt Signaling Pathway. Journal of Biological Chemistry, 2002, 277, 5816-5822.	3.4	21
39	Inhibition of the Wnt Signaling Pathway by Idax, a Novel Dvl-Binding Protein. Molecular and Cellular Biology, 2001, 21, 330-342.	2.3	114
40	Synergistic Activation of the Wnt Signaling Pathway by Dvl and Casein Kinase Iε. Journal of Biological Chemistry, 2001, 276, 33147-33155.	3.4	109
41	Effects of rat Axin domains on axis formation in Xenopus embryos. Development Growth and Differentiation, 2000, 42, 489-498.	1.5	12
42	Inhibition of Wnt Signaling Pathway by a Novel Axin-binding Protein. Journal of Biological Chemistry, 2000, 275, 37030-37037.	3.4	52
43	Complex Formation of Adenomatous Polyposis Coli Gene Product and Axin Facilitates Glycogen Synthase Kinase- $3\hat{l}^2$ -dependent Phosphorylation of \hat{l}^2 -Catenin and Down-regulates \hat{l}^2 -Catenin. Journal of Biological Chemistry, 2000, 275, 34399-34406.	3.4	116
44	A Novel \hat{I}^2 -Catenin-binding Protein Inhibits \hat{I}^2 -Catenin-dependent Tcf Activation and Axis Formation. Journal of Biological Chemistry, 2000, 275, 32871-32878.	3.4	92
45	Phosphorylation of Axin, a Wnt Signal Negative Regulator, by Glycogen Synthase Kinase-3β Regulates Its Stability. Journal of Biological Chemistry, 1999, 274, 10681-10684.	3.4	331
46	Axin prevents Wnt-3a-induced accumulation of \hat{l}^2 -catenin. Oncogene, 1999, 18, 979-985.	5.9	120
47	Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation. Oncogene, 1999, 18, 1303-1312.	5.9	81
48	Ectopic expression of constitutively activated Ral GTPase inhibits cell shape changes during Drosophila eye development. Oncogene, 1999, 18, 1967-1974.	5.9	22
49	Small G protein Ral and its downstream molecules regulate endocytosis of EGF and insulin receptors. EMBO Journal, 1999, 18, 3629-3642.	7.8	209
50	DIX Domains of Dvl and Axin Are Necessary for Protein Interactions and Their Ability To Regulate \hat{l}^2 -Catenin Stability. Molecular and Cellular Biology, 1999, 19, 4414-4422.	2.3	365
51	Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta -catenin and promotes GSK-3beta -dependent phosphorylation of beta -catenin. EMBO Journal, 1998, 17, 1371-1384.	7.8	1,120
52	Identification and Characterization of a Novel Protein Interacting with Ral-binding Protein 1, a Putative Effector Protein of Ral. Journal of Biological Chemistry, 1998, 273, 814-821.	3.4	131
53	Axin, a Negative Regulator of the Wnt Signaling Pathway, Directly Interacts with Adenomatous Polyposis Coli and Regulates the Stabilization of \hat{I}^2 -Catenin. Journal of Biological Chemistry, 1998, 273, 10823-10826.	3.4	441
54	Axil, a Member of the Axin Family, Interacts with Both Glycogen Synthase Kinase $3\hat{l}^2$ and \hat{l}^2 -Catenin and Inhibits Axis Formation of $\langle i \rangle$ Xenopus $\langle i \rangle$ Embryos. Molecular and Cellular Biology, 1998, 18, 2867-2875.	2.3	195

SHOSEI KISHIDA

#	Article	IF	CITATION
55	Characterization of Ral GDP Dissociation Stimulator-like (RGL) Activities to Regulate c-fosPromoter and the GDP/GTP Exchange of Ral. Journal of Biological Chemistry, 1997, 272, 10483-10490.	3.4	58
56	Synergistic activation of c-fos promoter activity by Raf and Ral GDP dissociation stimulator. Oncogene, 1997, 14, 515-521.	5.9	61
57	Colocalization of Ras and Ral on the membrane is required for Ras-dependent Ral activation through Ral GDP dissociation stimulator. Oncogene, 1997, 15, 2899-2907.	5.9	62
58	Significant Elevation of Serum Human Hepatocyte Growth Factor Levels in Patients with Acute Pancreatitis. Pancreas, 1996, 12, 76-83.	1.1	45
59	Post-translational Modifications of Ras and Ral Are Important for the Action of Ral GDP Dissociation Stimulator. Journal of Biological Chemistry, 1996, 271, 19710-19716.	3.4	36
60	Effect of the Microtubule-Disrupting Drug Colchicine on Rat Cerulein-Induced Pancreatitis in Comparison with the Microtubule Stabilizer Taxol. Pancreas, 1995, 11, 294-302.	1.1	10