Shinji Inagaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7374805/publications.pdf

Version: 2024-02-01

246 papers 17,424 citations

64 h-index 126 g-index

265 all docs 265 docs citations

265 times ranked

10780 citing authors

#	Article	IF	CITATIONS
1	Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks. Journal of the American Chemical Society, 1999, 121, 9611-9614.	13.7	1,641
2	An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature, 2002, 416, 304-307.	27.8	1,305
3	Synthesis of highly ordered mesoporous materials from a layered polysilicate. Journal of the Chemical Society Chemical Communications, 1993, , 680.	2.0	1,134
4	Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors. Chemical Society Reviews, 2011, 40, 789-800.	38.1	497
5	Catalytic Activity in Organic Solvents and Stability of Immobilized Enzymes Depend on the Pore Size and Surface Characteristics of Mesoporous Silica. Chemistry of Materials, 2000, 12, 3301-3305.	6.7	479
6	Syntheses of Highly Ordered Mesoporous Materials, FSM-16, Derived from Kanemite. Bulletin of the Chemical Society of Japan, 1996, 69, 1449-1457.	3.2	405
7	Cubic Hybrid Organicâ^'Inorganic Mesoporous Crystal with a Decaoctahedral Shape. Journal of the American Chemical Society, 2000, 122, 5660-5661.	13.7	372
8	Heterogeneous Molecular Systems for Photocatalytic CO ₂ Reduction with Water Oxidation. Angewandte Chemie - International Edition, 2016, 55, 14924-14950.	13.8	360
9	Self-Organization of Organosilica Solids with Molecular-Scale and Mesoscale Periodicities. Chemistry of Materials, 2008, 20, 891-908.	6.7	355
10	Self-Assembly of Biphenylene-Bridged Hybrid Mesoporous Solid with Molecular-Scale Periodicity in the Pore Walls. Journal of the American Chemical Society, 2002, 124, 15176-15177.	13.7	351
11	Sulfuric Acid-Functionalized Mesoporous Benzeneâ^'Silica with a Molecular-Scale Periodicity in the Walls. Journal of the American Chemical Society, 2002, 124, 9694-9695.	13.7	326
12	Mesoporous Titanium Phosphate Molecular Sieves with Ion-Exchange Capacity. Journal of the American Chemical Society, 2001, 123, 691-696.	13.7	318
13	Synthesis of an intercalated compound of montmorillonite and 6-polyamide. Journal of Inclusion Phenomena, 1987, 5, 473-482.	0.6	278
14	Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent. Microporous and Mesoporous Materials, 2001, 44-45, 755-762.	4.4	260
15	Synthesis, characterization, and catalytic activity of sulfonic acid-functionalized periodic mesoporous organosilicas. Journal of Catalysis, 2004, 228, 265-272.	6.2	218
16	Light Harvesting by a Periodic Mesoporous Organosilica Chromophore. Angewandte Chemie - International Edition, 2009, 48, 4042-4046.	13.8	216
17	Novel Templating Synthesis of Necklace-Shaped Mono- and Bimetallic Nanowires in Hybrid Organica^'Inorganic Mesoporous Material. Journal of the American Chemical Society, 2001, 123, 3373-3374.	13.7	211
18	Synthesis of large-pore phenylene-bridged mesoporous organosilica using triblock copolymer surfactant. Chemical Communications, 2002, , 2410-2411.	4.1	192

#	Article	IF	CITATIONS
19	Control of the microporosity within the pore walls of ordered mesoporous silica SBA-15. Chemical Communications, 2000, , 2121-2122.	4.1	174
20	A Solid Chelating Ligand: Periodic Mesoporous Organosilica Containing 2,2′-Bipyridine within the Pore Walls. Journal of the American Chemical Society, 2014, 136, 4003-4011.	13.7	166
21	Surface silanol groups of mesoporous silica FSM-16. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1985.	1.7	162
22	Isothermally Reversible Fluorescence Switching of a Mechanochromic Perylene Bisimide Dye. Advanced Materials, 2012, 24, 3350-3355.	21.0	147
23	A triazine functionalized porous organic polymer: excellent CO ₂ storage material and support for designing Pd nanocatalyst for C–C cross-coupling reactions. Journal of Materials Chemistry A, 2014, 2, 11642.	10.3	138
24	Hydrolysis of sugars catalyzed by water-tolerant sulfonated mesoporous silicas. Catalysis Letters, 2005, 102, 163-169.	2.6	137
25	Vapor phase hydrogenation of phenol over palladium supported on mesoporous CeO2 and ZrO2. Applied Catalysis A: General, 2003, 245, 317-331.	4.3	130
26	Enhanced Photocatalysis of Rhenium(I) Complex by Light-Harvesting Periodic Mesoporous Organosilica. Inorganic Chemistry, 2010, 49, 4554-4559.	4.0	130
27	Organization of Phenylene-Bridged Hybrid Mesoporous Silisesquioxane with a Crystal-like Pore Wall from a Precursor with Nonlinear Symmetry. Chemistry of Materials, 2004, 16, 1209-1213.	6.7	127
28	Synthesis of Platinum Nanowires in Organicâ^Inorganic Mesoporous Silica Templates by Photoreduction:  Formation Mechanism and Isolation. Journal of Physical Chemistry B, 2004, 108, 853-858.	2.6	122
29	A photoluminescent covalent triazine framework: CO ₂ adsorption, light-driven hydrogen evolution and sensing of nitroaromatics. Journal of Materials Chemistry A, 2016, 4, 13450-13457.	10.3	122
30	Functionalization on Silica Gel with Allylsilanes. A New Method of Covalent Attachment of Organic Functional Groups on Silica Gel. Journal of the American Chemical Society, 2003, 125, 4688-4689.	13.7	118
31	Synthesis of Cubic Hybrid Organicâ^'Inorganic Mesostructures with Dodecahedral Morphology from a Binary Surfactant Mixture. Chemistry of Materials, 2002, 14, 3509-3514.	6.7	109
32	Catalytic application of sulfonic acid functionalized mesoporous benzene–silica with crystal-like pore wall structure in esterification. Journal of Molecular Catalysis A, 2005, 230, 85-89.	4.8	103
33	Pore Wall of a Mesoporous Molecular Sieve Derived from Kanemite. Chemistry of Materials, 1996, 8, 2089-2095.	6.7	102
34	Titanium containing inorganic–organic hybrid mesoporous materials with exceptional activity in epoxidation of alkenes using hydrogen peroxide. Journal of Materials Chemistry, 2002, 12, 3078-3083.	6.7	100
35	Adsorption and Thermogravimetric Characterization of Mesoporous Materials with Uniform Organicâ Inorganic Frameworks. Journal of Physical Chemistry B, 2001, 105, 681-689.	2.6	99
36	Ship-in-bottle synthesis and catalytic performances of platinum carbonyl clusters, nanowires, and nanoparticles in micro- and mesoporous materials. Catalysis Today, 2001, 66, 23-31.	4.4	98

3

#	Article	IF	CITATIONS
37	Ammoximation of ketones catalyzed by titanium-containing ethane bridged hybrid mesoporous silsesquioxane. Chemical Communications, 2003, , 470-471.	4.1	98
38	Highly Ordered Mesoporous Organosilica Hybrid Materials. Bulletin of the Chemical Society of Japan, 2006, 79, 1463-1475.	3.2	96
39	Adsorption of water vapor and hydrophobicity of ordered mesoporous silica, FSM-16. Microporous and Mesoporous Materials, 1998, 21, 667-672.	4.4	95
40	Preparation and catalysis of Pt and Rh nanowires and particles in FSM-16. Microporous and Mesoporous Materials, 2001, 48, 171-179.	4.4	91
41	Template synthesis of nanoparticle arrays of gold, platinum and palladium in mesoporous silica films and powders. Journal of Materials Chemistry, 2004, 14, 752.	6.7	91
42	Adsorption Isotherm of Water Vapor and Its Large Hysteresis on Highly Ordered Mesoporous Silica. Journal of Colloid and Interface Science, 1996, 180, 623-624.	9.4	89
43	Structural Relation Properties of Hydrothermally Stable Functionalized Mesoporous Organosilicas and Catalysis. Journal of Physical Chemistry B, 2005, 109, 12250-12256.	2.6	89
44	Hole-Transporting Periodic Mesostructured Organosilica. Journal of the American Chemical Society, 2009, 131, 14225-14227.	13.7	87
45	An Alternate Route for the Synthesis of Hybrid Mesoporous Organosilica with Crystal-Like Pore Walls from Allylorganosilane Precursors. Journal of the American Chemical Society, 2005, 127, 8174-8178.	13.7	86
46	Luminescent periodic mesoporous organosilicas. Journal of Materials Chemistry, 2009, 19, 4451.	6.7	85
47	Novel templating fabrication of nano-structured Pt clusters and wires in the ordered cylindrical mesopores of FSM-16 and their unique properties in catalysis and magnetism. Microporous and Mesoporous Materials, 1998, 21, 597-606.	4.4	84
48	Hydrophobicity induced vapor-phase oxidation of propene over gold supported on titanium incorporated hybrid mesoporous silsesquioxane. Chemical Communications, 2002, , 2902-2903.	4.1	83
49	Visible-light-harvesting periodic mesoporous organosilica. Chemical Communications, 2009, , 6032.	4.1	83
50	Nanoporous Metal Oxides Synthesized by the Nanoscale Casting Process Using Supercritical Fluids. Chemistry of Materials, 2001, 13, 2392-2396.	6.7	82
51	Heterogeneous Catalysis for Water Oxidation by an Iridium Complex Immobilized on Bipyridineâ€Periodic Mesoporous Organosilica. Angewandte Chemie - International Edition, 2016, 55, 7943-7947.	13.8	82
52	Ethane-bridged hybrid mesoporous functionalized organosilicas with terminal sulfonic groups and their catalytic applications. Journal of Materials Chemistry, 2005, 15, 666.	6.7	80
53	Fluorescence Emission from 2,6â€Naphthyleneâ€Bridged Mesoporous Organosilicas with an Amorphous or Crystalâ€Like Framework. Chemistry - A European Journal, 2009, 15, 219-226.	3.3	80
54	A Visibleâ€Light Harvesting System for CO ₂ Reduction Using a Ru ^{II} –Re ^I Photocatalyst Adsorbed in Mesoporous Organosilica. ChemSusChem, 2015, 8, 439-442.	6.8	80

#	Article	IF	Citations
55	Novel Zirconiumâ^'Titanium Phosphates Mesoporous Materials for Hydrogen Production by Photoinduced Water Splitting. Journal of Physical Chemistry B, 2005, 109, 9231-9238.	2.6	79
56	Periodic Mesoporous Organosilica Derivatives Bearing a High Density of Metal Complexes on Pore Surfaces. Angewandte Chemie - International Edition, 2011, 50, 11667-11671.	13.8	79
57	Palladium nanowires and nanoparticles in mesoporous silica templates. Inorganica Chimica Acta, 2003, 350, 371-378.	2.4	77
58	Chemical modification of crystal-like mesoporous phenylene-silica with amino group. Chemical Communications, 2008, , 841-843.	4.1	77
59	Synthesis of Mesoporous Aromatic Silica Thin Films and Their Optical Properties. Chemistry of Materials, 2008, 20, 4495-4498.	6.7	76
60	Ship-in-Bottle Synthesis of [Pt15(CO)30]2-Encapsulated in Ordered Hexagonal Mesoporous Channels of FSM-16 and Their Effective Catalysis in Water-Gas Shift Reaction. Journal of the American Chemical Society, 1996, 118, 5810-5811.	13.7	74
61	Tetraphenylpyrene-Bridged Periodic Mesostructured Organosilica Films with Efficient Visible-Light Emission. Chemistry of Materials, 2010, 22, 2548-2554.	6.7	74
62	Ab Initio Studies of Aromatic Excimers Using Multiconfiguration Quasi-Degenerate Perturbation Theory. Journal of Physical Chemistry A, 2011 , 115 , 7687 - 7699 .	2.5	73
63	Immobilization of a Molybdenum Complex on Bipyridine-Based Periodic Mesoporous Organosilica and Its Catalytic Activity for Epoxidation of Olefins. ACS Catalysis, 2018, 8, 4160-4169.	11.2	73
64	Efficient Visibleâ€Light Emission from Dyeâ€Doped Mesostructured Organosilica. Advanced Materials, 2009, 21, 4798-4801.	21.0	67
65	Iridium–bipyridine periodic mesoporous organosilica catalyzed direct C–H borylation using a pinacolborane. Dalton Transactions, 2015, 44, 13007-13016.	3.3	67
66	Highly Fluorescent Mesostructured Films that consist of Oligo(phenylenevinylene)–Silica Hybrid Frameworks. Advanced Functional Materials, 2008, 18, 3699-3705.	14.9	62
67	Helium-4 Bose Fluids Formed in One-Dimensional 18 â,,« Diameter Pores. Physical Review Letters, 2001, 86, 4322-4325.	7.8	61
68	Self-organization of crystal-like aromatic–silica hybrid materials. Journal of Materials Chemistry, 2005, 15, 4136.	6.7	61
69	Photometathesis activity and thermal stability of two types of mesoporous silica materials, FSM-16 and MCM-41. Physical Chemistry Chemical Physics, 2000, 2, 5293-5297.	2.8	58
70	Catalytic Asymmetric Synthesis and Optical Resolution of Planar Chiral Rotaxane. Chemistry Letters, 2007, 36, 162-163.	1.3	58
71	Nanonecklaces of Platinum and Gold with High Aspect Ratios Synthesized in Mesoporous Organosilica Templates by Wet Hydrogen Reduction. Chemistry of Materials, 2006, 18, 337-343.	6.7	57
72	Template synthesis and characterization of gold nano-wires and -particles in mesoporous channels of FSM-16. Journal of Molecular Catalysis A, 2003, 199, 95-102.	4.8	55

#	Article	IF	CITATIONS
73	Crystal-like periodic mesoporous organosilica bearing pyridine units within the framework. Chemical Communications, 2010, 46, 8163.	4.1	55
74	Superfluidity of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mmultiscripts> <mml:mi> He </mml:mi> <mml:mprescripts></mml:mprescripts> <mml:none></mml:none> <mml:mn> 4 </mml:mn> </mml:mmultiscripts> </mml:math> in One and Three Dimensions Realized in Nanopores. Physical Review Letters, 2007, 99, 255301.	7.8	53
75	A Periodic Mesoporous Organosilicaâ€Based Donor–Acceptor System for Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2009, 15, 13041-13046.	3.3	53
76	Pore size distribution and adsorption selectivity of sepiolite. Clay Minerals, 1990, 25, 99-105.	0.6	52
77	Structure analysis of mesoporous material  FSM-16' Studies by electron microscopy and X-ray diffraction. Microporous and Mesoporous Materials, 1998, 21, 589-596.	4.4	52
78	Oligomeric Polymer Surfactant Driven Self-Assembly of Phenylene-Bridged Mesoporous Materials and Their Physicochemical Properties. Langmuir, 2005, 21, 443-449.	3.5	51
79	Transparent and visible-light harvesting acridone-bridged mesostructured organosilica film. Journal of Materials Chemistry, 2010, 20, 4399.	6.7	51
80	Cooperative Catalysis of an Alcohol Dehydrogenase and Rhodiumâ€Modified Periodic Mesoporous Organosilica. Angewandte Chemie - International Edition, 2019, 58, 9150-9154.	13.8	51
81	Synthesis of Phenylene Bridged Mesoporous Silsesquioxanes with Spherical Morphology in Ammonia Solution. Chemistry Letters, 2004, 33, 88-89.	1.3	50
82	A useful procedure for diiodination of carbazoles and subsequent efficient transformation to novel 3,6-bis(triethoxysilyl)carbazoles giving mesoporous materials. Tetrahedron Letters, 2006, 47, 6957-6960.	1.4	50
83	Highly Conductive Organosilica Hybrid Films Prepared from a Liquid rystal Perylene Bisimide Precursor. Advanced Functional Materials, 2011, 21, 3291-3296.	14.9	50
84	Enhanced Fluorescence Detection of Metal lons Using Lightâ€Harvesting Mesoporous Organosilica. Chemistry - A European Journal, 2012, 18, 1992-1998.	3.3	50
85	Enhancement of Proton Transport by High Densification of Sulfonic Acid Groups in Highly Ordered Mesoporous Silica. Chemistry of Materials, 2013, 25, 1584-1591.	6.7	49
86	Direct synthesis of porous organosilicas containing chiral organic groups within their framework and a new analytical method for enantiomeric purity of organosilicas. Chemical Communications, 2008, , 202-204.	4.1	48
87	Efficient light harvesting via sequential two-step energy accumulation using a Ru–Re5 multinuclear complex incorporated into periodic mesoporous organosilica. Chemical Science, 2014, 5, 639-648.	7.4	48
88	A Robust Platinum Carbonyl Cluster Anion [Pt3(CO)6]52-Encapsulated in an Ordered Mesoporous Channel of FSM-16:Â FTIR/EXAFS/TEM Characterization and Catalytic Performance in the Hydrogenation of Ethene and 1,3-Butadiene. Journal of Physical Chemistry B, 1998, 102, 3866-3875.	2.6	47
89	Heterogene molekulare Systeme für eine photokatalytische CO ₂ â€Reduktion mit Wasseroxidation. Angewandte Chemie, 2016, 128, 15146-15174.	2.0	46
90	Re(bpy)(CO) ₃ Cl Immobilized on Bipyridineâ€Periodic Mesoporous Organosilica for Photocatalytic CO ₂ Reduction. Chemistry - A European Journal, 2018, 24, 3846-3853.	3.3	46

#	Article	IF	CITATIONS
91	Rutheniumâ€Immobilized Periodic Mesoporous Organosilica: Synthesis, Characterization, and Catalytic Application for Selective Oxidation of Alkanes. Chemistry - A European Journal, 2015, 21, 15564-15569.	3.3	44
92	Synthesis of 9,9′-spirobifluorene-based conjugated microporous polymers by FeCl ₃ -mediated polymerization. Polymer Chemistry, 2016, 7, 1290-1296.	3.9	44
93	Lanthanide-Grafted Bipyridine Periodic Mesoporous Organosilicas (BPy-PMOs) for Physiological Range and Wide Temperature Range Luminescence Thermometry. ACS Applied Materials & Diterfaces, 2020, 12, 13540-13550.	8.0	44
94	Biphenylene Bridged Bifunctional Hybrid Mesoporous Silsesquioxanes with Sulfonic Acid Functionalities and Crystalline Pore Walls. Chemistry Letters, 2003, 32, 914-915.	1.3	42
95	Photooxidation of benzene to phenol by ruthenium bipyridine complexes grafted on mesoporous silica FSM-16. Journal of Molecular Catalysis A, 2001, 166, 211-218.	4.8	40
96	Hybrid ethane–siloxane mesoporous materials with cubic symmetry. Microporous and Mesoporous Materials, 2001, 44-45, 165-172.	4.4	40
97	A Versatile Solid Photosensitizer: Periodic Mesoporous Organosilicas with Ruthenium Tris(bipyridine) Complexes Embedded in the Pore Walls. Advanced Functional Materials, 2016, 26, 5068-5077.	14.9	40
98	Photocatalytic CO ₂ Reduction by Periodic Mesoporous Organosilica (PMO) Containing Two Different Ruthenium Complexes as Photosensitizing and Catalytic Sites. Chemistry - A European Journal, 2017, 23, 10301-10309.	3.3	38
99	Title is missing!. Topics in Catalysis, 2002, 18, 73-78.	2.8	37
100	Organosilicate–surfactant lamellar mesophase with molecular-scale periodicity in the silicate layers. Chemical Communications, 2005, , 1423-1425.	4.1	37
101	Synthesis of Highly Ordered Hybrid Mesoporous Material Containing Etenylene (–CH=CH–) within the Silicate Framework. Chemistry Letters, 2003, 32, 950-951.	1.3	36
102	The Surface of Ordered Mesoporous Benzeneâ^'Silica Hybrid Material:  An Infrared and ab Initio Molecular Modeling Study. Journal of Physical Chemistry B, 2005, 109, 11961-11966.	2.6	36
103	Highly Ordered Platinum Nanodot Arrays with Cubic Symmetry in Mesoporous Thin Films. Advanced Materials, 2006, 18, 760-762.	21.0	36
104	Superfluidity ofHe4in nanosize channels. Physical Review B, 2007, 76, .	3.2	36
105	Novel synthesis of bifunctional catalysts with different microenvironments. Chemical Communications, 2011, 47, 10422.	4.1	36
106	Heterogeneous Catalysis for Water Oxidation by an Iridium Complex Immobilized on Bipyridineâ€Periodic Mesoporous Organosilica. Angewandte Chemie, 2016, 128, 8075-8079.	2.0	36
107	Possible One-DimensionalHe3Quantum Fluid Formed in Nanopores. Physical Review Letters, 2005, 94, 065301.	7.8	35
108	Mesoporous Organosilica Hybrids Consisting of Silicaâ€Wrapped π–π Stacking Columns. Angewandte Chemie - International Edition, 2012, 51, 1156-1160.	13.8	35

#	Article	IF	Citations
109	Physisorption of Nitrogen by Mesoporous Modified Kanemite. Langmuir, 1996, 12, 599-600.	3.5	34
110	Film growth of4Headsorbed in mesopores. Physical Review B, 2003, 68, .	3.2	34
111	Periodic Mesoporous Organosilica with Molecularâ€Scale Ordering Selfâ€Assembled by Hydrogen Bonds. Angewandte Chemie - International Edition, 2015, 54, 11999-12003.	13.8	34
112	Photooxidation of Arylmethyl Bromides with Mesoporous Silica FSM-16. Organic Letters, 2000, 2, 2455-2457.	4.6	33
113	Acidic Property of FSM-16. 2. Generation of Lewis Acid Sites and Catalysis. Journal of Physical Chemistry B, 1999, 103, 6450-6456.	2.6	32
114	Functionalized mesoporous dendritic silica hybrids as base catalysts with volatile organic compound elimination ability. Journal of Materials Chemistry, 2006, 16, 4714.	6.7	32
115	Synthesis of visible-light-absorptive and hole-transporting periodic mesoporous organosilica thin films for organic solar cells. Journal of Materials Chemistry A, 2014, 2, 11857-11865.	10.3	31
116	Enhanced benzene selectivity of mesoporous silica SPV sensors by incorporating phenylene groups in the silica framework. Sensors and Actuators B: Chemical, 2009, 138, 417-421.	7.8	30
117	Energy and Electron Transfer from Fluorescent Mesostructured Organosilica Framework to Guest Dyes. Langmuir, 2012, 28, 3987-3994.	3.5	30
118	Oxidative Photodecarboxylation of \hat{l}_{\pm} -Hydroxycarboxylic Acids and Phenylacetic Acid Derivatives with FSM-16. Organic Letters, 2000, 2, 331-333.	4.6	29
119	The Formation of Periodicity within the Pore Walls of Mesoporous Organosilica by Post-Synthesis Treatment. Bulletin of the Chemical Society of Japan, 2005, 78, 932-936.	3.2	29
120	Microscopic Structure and Mobility of Guest Molecules in Mesoporous Hybrid Organosilica: Evaluation with Single-Molecule Tracking. Journal of Physical Chemistry C, 2009, 113, 11884-11891.	3.1	29
121	Mesostructured organosilica with a 9-mesityl-10-methylacridinium bridging unit: photoinduced charge separation in the organosilica framework. Chemical Communications, 2010, 46, 9235.	4.1	29
122	Transfer hydrogenation of nitrogen heterocycles using a recyclable rhodium catalyst immobilized on bipyridine-periodic mesoporous organosilica. Catalysis Science and Technology, 2018, 8, 534-539.	4.1	29
123	Mesoporous phenylene–silica hybrid materials with 3D-cage pore structures. Microporous and Mesoporous Materials, 2006, 89, 103-108.	4.4	28
124	Synthesis and optical properties of 2,6-anthracene-bridged periodic mesostructured organosilicas. Microporous and Mesoporous Materials, 2009, 117, 535-540.	4.4	26
125	Thermal behavior, structure, and dynamics of low-temperature water confined in mesoporous organosilica by differential scanning calorimetry, X-ray diffraction, and quasi-elastic neutron scattering. Pure and Applied Chemistry, 2012, 85, 289-305.	1.9	26
126	Enantioseparation using ortho- or meta-substituted phenylcarbamates of amylose as chiral stationary phases for high-performance liquid chromatography. Journal of Chromatography A, 2013, 1286, 41-46.	3.7	26

#	Article	IF	CITATIONS
127	Photooxidation of cyclohexene and benzene with oxygen by fullerenes grafted on mesoporous FSM-16. Catalysis Letters, 2000, 68, 241-244.	2.6	25
128	Characterization and photocatalytic reduction of CO2with H2O on Ti/FSM-16 synthesized by various preparation methods. Journal of Synchrotron Radiation, 2001, 8, 640-642.	2.4	25
129	Self-assembly of cubic phenylene bridged mesoporous hybrids from allylorganosilane precursors. Journal of Materials Chemistry, 2006, 16, 3305.	6.7	25
130	Dynamics in the excited electronic state of periodic mesoporous biphenylylene-silica studied by time-resolved diffuse reflectance and fluorescence spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 11688.	2.8	25
131	Mesoporous organosilica nanotubes containing a chelating ligand in their walls. APL Materials, 2014, 2, 113308.	5.1	24
132	Title is missing!. Catalysis Letters, 2000, 66, 251-253.	2.6	23
133	Synthesis of Mesoporous Silicon Oxynitrides via Direct Nitridation with Nitrogen. Chemistry Letters, 2003, 32, 94-95.	1.3	23
134	Theoretical Studies on Siâ^C Bond Cleavage in Organosilane Precursors during Polycondensation to Organosilica Hybrids. Journal of Physical Chemistry A, 2010, 114, 6047-6054.	2.5	23
135	Enhanced translational diffusion of confined water under electric field. Physical Review E, 2012, 86, 021506.	2.1	23
136	Hierarchically structured biphenylene-bridged periodic mesoporous organosilica. Journal of Materials Chemistry, 2011, 21, 17338.	6.7	22
137	Preparation and Properties of Multiwall Carbon Nanotubes/Polystyrene-Block-Polybutadiene-Block-Polystyrene Composites. Industrial & Engineering Chemistry Research, 2011, 50, 8016-8022.	3.7	22
138	Fast and stable vapochromic response induced through nanocrystal formation of a luminescent platinum(II) complex on periodic mesoporous organosilica. Scientific Reports, 2019, 9, 15151.	3.3	22
139	Heterogeneous hydrosilylation reaction catalysed by platinum complexes immobilized on bipyridine-periodic mesoporous organosilicas. Dalton Transactions, 2019, 48, 5534-5540.	3.3	22
140	Observation of Superfluid 4He Adsorbed in One-Dimensional Mesopores. Journal of Low Temperature Physics, 1998, 110, 573-578.	1.4	21
141	Mesoporous materials derived from layered silicates and the adsorption properties. Studies in Surface Science and Catalysis, 1998, 117, 65-76.	1.5	21
142	â€~Ship-in-bottle' synthesis of platinum carbonyl clusters in titania- or zirconia-modified mesoporous channels of FSM-16. Structural characterization and catalysis in CO hydrogenation. Inorganica Chimica Acta, 1999, 294, 281-284.	2.4	21
143	New Synthetic Method of Imides through Oxidative Photodecarboxylation Reaction of N-Protected α-Amino Acids with FSM-16. Chemistry Letters, 2000, 29, 542-543.	1.3	21
144	Fabrication of single-wall carbon nanotubes within the channels of a mesoporous material by catalyst-supported chemical vapor deposition. Carbon, 2009, 47, 722-730.	10.3	21

#	Article	IF	CITATIONS
145	Hybridization between Periodic Mesoporous Organosilica and a Ru(II) Polypyridyl Complex with Phosphonic Acid Anchor Groups. ACS Applied Materials & Interfaces, 2014, 6, 1992-1998.	8.0	21
146	Hydrogen Production from Methanolâ€Water Mixture over Immobilized Iridium Complex Catalysts in Vaporâ€Phase Flow Reaction. ChemSusChem, 2021, 14, 1074-1081.	6.8	21
147	Inclusion polymerization of Isoprene in the channels of sepiolite. Research on Chemical Intermediates, 1995, 21, 167-180.	2.7	20
148	Mesoporous Benzeneâ [^] Silica Hybrid Materials with a Different Degree of Order in the Wall Structure:Â An IR Comparative Study. Journal of Physical Chemistry B, 2005, 109, 21732-21736.	2.6	20
149	Cubic phenylene bridged mesoporous hybrids from allylorganosilane precursors and their applications in Friedel–Crafts acylation reaction. Microporous and Mesoporous Materials, 2007, 101, 231-239.	4.4	20
150	Facile formation of gold nanoparticles on periodic mesoporous bipyridine-silica. Catalysis Today, 2017, 298, 258-262.	4.4	20
151	Preparation of hierarchical porous silica and its optical property. Microporous and Mesoporous Materials, 2006, 96, 205-209.	4.4	19
152	Immobilization of luminescent Platinum(II) complexes on periodic mesoporous organosilica and their water reduction photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 334-344.	3.9	19
153	IR and Computational Characterization of CO Adsorption on a Model Surface, the Phenylene Periodic Mesoporous Organosilca with Crystalline Walls. Journal of Physical Chemistry C, 2008, 112, 19560-19567.	3.1	18
154	Oxidative Photo-Decarboxylation in the Presence of Mesoporous Silicas. Chemical and Pharmaceutical Bulletin, 2006, 54, 1571-1575.	1.3	17
155	Hydroxyl Species in Large-Pore Phenylene-Bridged Periodic Mesoporous Organosilica. Langmuir, 2007, 23, 13164-13168.	3.5	17
156	Fluorescence studies on phenylene moieties embedded in a framework of periodic mesoporous organosilica. Physical Chemistry Chemical Physics, 2011, 13, 7961.	2.8	17
157	Nano-scale structure control of mesoporous silica. Materials Science & Diplomatical Materials: Properties, Microstructure and Processing, 1996, 217-218, 116-118.	5.6	16
158	Nanoporous Titania Synthesized by a Nanoscale Casting Process in Supercritical Carbon Dioxide. Journal of the American Ceramic Society, 2002, 85, 161-164.	3.8	16
159	Electron-Rich Sites at the Surface of Periodic Mesoporous Organosilicas: A UVâ ^{**} Visible Characterization of Adsorbed Iodine. Journal of Physical Chemistry C, 2009, 113, 20396-20400.	3.1	16
160	Phases of superfluid helium in smooth cylindrical pores. Physical Review B, 2013, 88, .	3.2	16
161	Enhanced durability of an iridium-bipyridine complex embedded into organosilica nanotubes for water oxidation. Dalton Transactions, 2017, 46, 9369-9374.	3.3	16
162	Synthesis of single-wall carbon nanotubes grown from size-controlled Rh/Pd nanoparticles by catalyst-supported chemical vapor deposition. Chemical Physics Letters, 2008, 458, 346-350.	2.6	15

#	Article	IF	Citations
163	Ab Initio Molecular Orbital Study on the Excited States of [2.2]-, [3.3]-, and Siloxane-Bridged Paracyclophanes. Journal of Physical Chemistry A, 2012, 116, 10194-10202.	2.5	15
164	Formation of hexagonal and cubic fluorescent periodic mesoporous organosilicas in the channels of anodic alumina membranes. Journal of Materials Chemistry C, 2014, 2, 50-55.	5.5	15
165	Synthesis of a spirobifluorene-bridged allylsilane precursor for periodic mesoporous organosilica. Chemical Communications, 2011, 47, 5025.	4.1	14
166	Photocatalytic H2 Evolution by Pt-Loaded 9,9′-Spirobifluorene-Based Conjugated Microporous Polymers under Visible-Light Irradiation. Bulletin of the Chemical Society of Japan, 2016, 89, 887-891.	3.2	14
167	Iridium Complex Immobilized on Custom-Designed Periodic Mesoporous Organosilica as Reusable Catalyst for the Dehydrogenative Oxidation of Alcohols. ACS Applied Nano Materials, 2020, 3, 2527-2535.	5.0	14
168	lonic conductivity of mesoporous electrolytes with a high density of pyridinium groups within their framework. Journal of Materials Chemistry A, 2014, 2, 9960.	10.3	13
169	Lightâ€Harvesting Photocatalysis for Water Oxidation Using Mesoporous Organosilica. Chemistry - A European Journal, 2014, 20, 9130-9136.	3.3	13
170	Mesoporous organosilica films for laser desorption/ionization mass spectrometry. Microporous and Mesoporous Materials, 2018, 268, 125-130.	4.4	13
171	Cooperative Catalysis of an Alcohol Dehydrogenase and Rhodiumâ€Modified Periodic Mesoporous Organosilica. Angewandte Chemie, 2019, 131, 9248-9252.	2.0	13
172	Periodic mesoporous organosilicas possessing molecularly mixed pyridine and benzene moieties in the frameworks. Microporous and Mesoporous Materials, 2019, 284, 10-15.	4.4	12
173	Heterogeneous water oxidation photocatalysis based on periodic mesoporous organosilica immobilizing a tris(2,2′-bipyridine)ruthenium sensitizer. RSC Advances, 2020, 10, 13960-13967.	3.6	12
174	Light-harvesting photocatalysis for H2 evolution by methylacridone-bridged periodic mesoporous organosilica. Applied Catalysis B: Environmental, 2021, 287, 119965.	20.2	12
175	<i>Ab initio</i> study on the excited states of pyrene and its derivatives using multi-reference perturbation theory methods. RSC Advances, 2020, 10, 12988-12998.	3.6	11
176	FSM-16 and mesoporous organosilicas. Studies in Surface Science and Catalysis, 2004, 148, 109-132.	1.5	10
177	A new synthetic approach for functional triisopropoxyorganosilanes using molecular building blocks. Tetrahedron, 2013, 69, 5312-5318.	1.9	10
178	A Heterogeneous Hydrogenâ€Evolution Catalyst Based on a Mesoporous Organosilica with a Diiron Catalytic Center Modelling [FeFe]â€Hydrogenase. ChemCatChem, 2018, 10, 4894-4899.	3.7	10
179	Direct nanoimprinting of nanoporous organosilica films consisting of covalently crosslinked photofunctional frameworks. Nanoscale, 2020, 12, 21146-21154.	5.6	10
180	Oxidative Transformation of Arylmethyl Bromides and Alcohols with a Combination of Mesoporous Silica FSM-16 and Alkali Iodides under Photoirradiation. Organic Letters, 2001, 3, 2653-2656.	4.6	9

#	Article	IF	CITATIONS
181	Synthesis of Self-standing Mesoporous Organosilica Films. Chemistry Letters, 2005, 34, 1342-1343.	1.3	9
182	Synthesis of self-standing mesostructured phenylene–silica–polyimide hybrid films. Materials Letters, 2006, 60, 177-179.	2.6	9
183	Enhanced sol–gel polymerization of organoallylsilanes by solvent effect. Journal of Materials Chemistry, 2011, 21, 14020.	6.7	9
184	Basic Sites on Periodic Mesoporous Organosilicas Investigated by XPS and <i>in Situ</i> FTIR of Adsorbed Pyrrole. Langmuir, 2011, 27, 1181-1185.	3.5	9
185	Synthesis of single crystalline anthracene-silica hybrid and its structural and optical properties. Solid State Sciences, 2011, 13, 729-735.	3.2	9
186	Dynamics of Excitation Energy Transfer from Biphenylylene Excimers in Pore Walls of Periodic Mesoporous Organosilica to Coumarin 1 in the Mesochannels. Journal of Physical Chemistry C, 2013, 117, 14865-14871.	3.1	9
187	Immobilized Zn(OAc)2 on bipyridine-based periodic mesoporous organosilica for N-formylation of amines with CO2 and hydrosilanes. New Journal of Chemistry, 2021, 45, 9501-9505.	2.8	9
188	Relative difference sets fixed by inversion and Cayley graphs. Journal of Combinatorial Theory - Series A, 2005, 111, 165-173.	0.8	8
189	Cooperative Conformational Change and Excitation Migration of Biphenyl-PMO Amorphous Film, As Revealed by Femtosecond Time-Resolved Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 9419-9428.	3.1	8
190	Catalytic Disproportionation of Formic Acid to Methanol by an Iridium Complex Immobilized on Bipyridineâ€Periodic Mesoporous Organosilica. ChemCatChem, 2019, 11, 4797-4802.	3.7	8
191	Well-controlled radical-based epoxidation catalyzed by copper complex immobilized on bipyridine-periodic mesoporous organosilica. Applied Catalysis A: General, 2019, 575, 87-92.	4.3	8
192	Porous materials: Looking through the electron microscope. Studies in Surface Science and Catalysis, 2002, 141, 27-34.	1.5	7
193	Facile preparation of oriented nanoporous silica films from solvent-free liquid-crystalline mixtures. Chemical Communications, 2012, 48, 10772.	4.1	7
194	Re(bpy)(CO) 3 Cl Immobilized on Bipyridine Organosilica Nanotubes for Photocatalytic CO 2 Reduction. European Journal of Inorganic Chemistry, 2021, 2021, 1624-1631.	2.0	7
195	Mesoporous Materials with Uniform Pore Size; Synthesis and Their Applications Nippon Kagaku Kaishi Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1995, , 327-333.	0.1	7
196	Hybrid Organic-Inorganic Mesoporous Materials. Journal of the Society of Powder Technology, Japan, 2002, 39, 518-526.	0.1	6
197	A new family of organic-bridged mesoporous materials. Studies in Surface Science and Catalysis, 2003, , 1-8.	1.5	6
198	Preparation of Free-standing Films from 3-Mercaptopropylpolysilsesquioxane. Kobunshi Ronbunshu, 2007, 64, 705-707.	0.2	6

#	Article	IF	Citations
199	Enhanced Photoluminescence of Mesostructured Organosilica Films with a High Density of Fluorescent Chromophores. Macromolecular Chemistry and Physics, 2018, 219, 1700596.	2.2	6
200	Effects of pore surfaces on the electronic states of metal complexes formed on bipyridine periodic mesoporous organosilica. New Journal of Chemistry, 2019, 43, 2471-2478.	2.8	6
201	Synthesis and Applications of Periodic Mesoporous Organosilicas. , 2019, , 1-25.		6
202	Luminescent Nanorattles Based on Bipyridine Periodic Mesoporous Organosilicas for Simultaneous Thermometry and Catalysis. Chemistry of Materials, 2022, 34, 3770-3780.	6.7	6
203	Layer-by-Layer Growth of 4He Adsorbed on One-dimensional 18ÃPores. Journal of Low Temperature Physics, 2000, 121, 537-542.	1.4	5
204	Templating fabrication and catalysis of platinum nanowires in mesoporous channels of FSM-16. Studies in Surface Science and Catalysis, 2000, , 3041-3046.	1.5	5
205	Template synthesis and catalysis of metal nanowires in mesoporous silicas. Studies in Surface Science and Catalysis, 2003, 146, 23-28.	1.5	5
206	Charge Separation in a Multifunctionalized Framework of Hydrogenâ∈Bonded Periodic Mesoporous Organosilica. Chemistry - an Asian Journal, 2018, 13, 2117-2125.	3.3	5
207	Nanoporous Substrates with Molecular-Level Perfluoroalkyl/Alkylamide Surface for Laser Desorption/Ionization Mass Spectrometry of Small Proteins. ACS Applied Materials & Description (1972) 14, 3716-3725.	8.0	5
208	Change in Molecular Orientation with Condensation of $4,4\hat{a}\in^2$ -Bis(trihydroxysilyl)biphenyl Crystals. Bulletin of the Chemical Society of Japan, 2009, 82, 1035-1038.	3.2	4
209	Synthesis of highly ordered mesoporous silica thin films for nano-fabrication of platinum nanodot arrays. Journal of Porous Materials, 2010, 17, 529-534.	2.6	4
210	Synthesis, Crystal Structures, and Properties of a Series of Coordination Polymers Employing R4-Terephthalate (R = H, F, Cl, Br) and 4,4′-Bipyridine as Bridging Ligands. Bulletin of the Chemical Society of Japan, 2012, 85, 1102-1111.	3.2	4
211	Templateâ€Free Synthesis of Electroconductive Triphenylamine–Silica Nanotubes Exhibiting a Mixedâ€Valence State. Advanced Functional Materials, 2018, 28, 1803116.	14.9	4
212	Polymerization of methyl methacrylate by organic isocyanate–triethylamine systems. Journal of Polymer Science: Polymer Chemistry Edition, 1974, 12, 1135-1140.	0.8	3
213	Structural Characteristic of Outermost Surface of Cubic Mesoporous Silica Film. Chemistry Letters, 2007, 36, 862-863.	1.3	3
214	I2 as a probe for aromatic rings in phenylene-bridged periodic mesoporous organosilica. Studies in Surface Science and Catalysis, 2008, , 985-988.	1.5	3
215	Organic-Inorganic Hybrid Mesoporous Silica. Advances in Materials Research, 2009, , 141-169.	0.2	3
216	Exciton migration dynamics between phenylene moieties in the framework of periodic mesoporous organosilica powder. RSC Advances, 2013, 3, 14774.	3.6	3

#	Article	IF	CITATIONS
217	Properties and Interfacial Structure Analysis of MWCNT/ESBS Composites. Industrial & Description of MWCNT/ES	3.7	3
218	Excited-State Dynamics of 2,2′-Bipyridine Moieties Embedded in the Framework of Periodic Mesoporous Organosilica. Journal of Physical Chemistry C, 2019, 123, 28443-28449.	3.1	3
219	Hydrogen Production from Methanolâ€Water Mixture over Immobilized Iridium Complex Catalysts in Vaporâ€Phase Flow Reaction. ChemSusChem, 2021, 14, 994-994.	6.8	3
220	Metal scavenging and catalysis by periodic mesoporous organosilicas with 2,2′â€bipyridine metal chelating ligands. Applied Organometallic Chemistry, 2021, 35, e6341.	3.5	3
221	Microreactor Coated with Mesoporous Organosilica Thin Film as a Support for Metal Complex Catalysts. European Journal of Inorganic Chemistry, 2020, 2020, 4083-4087.	2.0	3
222	Title is missing!. Catalysis Surveys From Asia, 2001, 4, 99-106.	1.2	2
223	Organic-Containing Mesoporous Silicas with a Variety of Mesophases and a Periodic Pore Wall Structure. Materials Research Society Symposia Proceedings, 2002, 726, 1.	0.1	2
224	Benzene sensors based on surface photo voltage of mesoporous organo-silica hybrid thin films. Studies in Surface Science and Catalysis, 2007, 165, 893-896.	1.5	2
225	Poly[[dodecaaqua(μ4-benzene-1,4-dicarboxylato)(μ2-4,4′-bipyridine-ΰ2N:N′)dicerium(III)] bis(benzene-1,4-dicarboxylate)]. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m643-m644.	0.2	2
226	Facile Synthesis of Functional Alkoxysilane Precursor with Short Linkers toward Organosilica Hybrids with a High Density of Chromophores. Chemistry Letters, 2012, 41, 316-318.	1.3	2
227	An Effective Synthetic Process for Pt-ZnO Composite and PtZn Alloy Using Spherical Coordination Polymer Particles as Precursors. Chemistry Letters, 2017, 46, 1112-1115.	1.3	2
228	Bipyridine-silica nanotubes with high bipyridine contents in the framework. Microporous and Mesoporous Materials, 2021, 313, 110854.	4.4	2
229	Molecular recognition of catechols on the crystal-like surface of periodic mesoporous organosilica containing pyridinylethynylpyridine. Inorganic Chemistry Frontiers, 2022, 9, 3669-3678.	6.0	2
230	31 Template synthesis, formation mechanism and catalysis of metal nanowires in mesoporous materials. Studies in Surface Science and Catalysis, 2003, , 173-176.	1.5	1
231	STRUCTURAL CONTROL OF NANOPARTICLES. , 2008, , 49-112.		1
232	Comment on "Spin-Coated Periodic Mesoporous Organosilica Thin Films with Molecular-Scale Order within the Organosilica Wall― Chemistry of Materials, 2008, 20, 4531-4531.	6.7	1
233	Synthesis of Organic-inorganic Hybrids from Benzene-bridged Polysiloxane. Kobunshi Ronbunshu, 2008, 65, 416-420.	0.2	1
234	Study on Applications of Related Substance of Fullerenes Preparation and Properties of Related Substance of Fullerenes/SBS composites. Nippon Gomu Kyokaishi, 2009, 82, 400-404.	0.0	1

#	Article	IF	CITATIONS
235	A Novel Sol–Gel Approach to Highly Condensed Silicas at Low Temperature. Chemistry Letters, 2012, 41, 280-281.	1.3	1
236	Structure and Dynamics of Water Confined in Mesoporous Silica and Periodic Mesoporous Organosilica. Bunseki Kagaku, 2012, 61, 989-998.	0.2	1
237	Dynamics of the Fast Component of Nano-Confined Water Under Electric Field. Journal of the Physical Society of Japan, 2013, 82, SA007.	1.6	1
238	Theoretical analysis of means of preventing Si–C bond cleavage during polycondensation of organosilanes to organosilicas. New Journal of Chemistry, 2021, 45, 6120-6128.	2.8	1
239	Compressibility of 4He Bose fluids adsorbed on one-dimensional 20 Ã pores. Physica B: Condensed Matter, 2000, 284-288, 137-138.	2.7	0
240	119 Mixed zirconium titanium phosphate (ZTP) mesoporous materials and the photo-catalysis of water decomposition. Studies in Surface Science and Catalysis, 2003, , 495-496.	1.5	0
241	Novel Zirconium—Titanium Phosphates Mesoporous Materials for Hydrogen Production by Photoinduced Water Splitting ChemInform, 2005, 36, no.	0.0	O
242	Denitration Catalyst Properties of Dense Packed Meso-porous Silica Compact without Inter-particles Macro-pore Prepared by Ultra High Pressure Isostatic Pressing. Journal of the Society of Powder Technology, Japan, 2006, 43, 726-730.	0.1	0
243	CONTROL OF NANOSTRUCTURE OF MATERIALS. , 2008, , 177-265.		O
244	Transition from a 2D Degenerate Bose Liquid to 3D Superfluid in ⁴ He Films Formed in Nanopores. Journal of the Physical Society of Japan, 2017, 86, 103601.	1.6	0
245	Excited-State Dynamics of Phenylene Moieties in a Framework of the Organosilica Nanotube. Journal of Physical Chemistry C, 2017, 121, 14962-14967.	3.1	0
246	Synthesis and Optical Applications of Periodic Mesoporous Organosilicas. The Enzymes, 2018, 44, 11-34.	1.7	0