Erjia Guan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7373808/publications.pdf Version: 2024-02-01

EDILA CILANI

#	Article	IF	CITATIONS
1	Product Selectivity Controlled by Nanoporous Environments in Zeolite Crystals Enveloping Rhodium Nanoparticle Catalysts for CO ₂ Hydrogenation. Journal of the American Chemical Society, 2019, 141, 8482-8488.	13.7	242
2	A pyridinyl-functionalized tetraphenylethylene fluorogen for specific sensing of trivalent cations. Chemical Communications, 2013, 49, 1503.	4.1	168
3	Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation. Nature Communications, 2018, 9, 1362.	12.8	161
4	Silica accelerates the selective hydrogenation of CO2 to methanol on cobalt catalysts. Nature Communications, 2020, 11, 1033.	12.8	124
5	Supported Metal Pair-Site Catalysts. ACS Catalysis, 2020, 10, 9065-9085.	11.2	67
6	Dispersed Nickel Boosts Catalysis by Copper in CO ₂ Hydrogenation. ACS Catalysis, 2020, 10, 9261-9270.	11.2	52
7	Atomically Dispersed Ru on Manganese Oxide Catalyst Boosts Oxidative Cyanation. ACS Catalysis, 2020, 10, 6299-6308.	11.2	51
8	Controlling catalytic activity and selectivity for partial hydrogenation by tuning the environment around active sites in iridium complexes bonded to supports. Chemical Science, 2019, 10, 2623-2632.	7.4	40
9	Stable Rhodium Pair Sites on MgO: Influence of Ligands and Rhodium Nuclearity on Catalysis of Ethylene Hydrogenation and H–D Exchange in the Reaction of H ₂ with D ₂ . ACS Catalysis, 2018, 8, 482-487.	11.2	35
10	Bulky Calixarene Ligands Stabilize Supported Iridium Pair-Site Catalysts. Journal of the American Chemical Society, 2019, 141, 4010-4015.	13.7	34
11	Neural network assisted analysis of bimetallic nanocatalysts using X-ray absorption near edge structure spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 18902-18910.	2.8	33
12	MgO-Supported Iridium Metal Pair-Site Catalysts Are More Active and Resistant to CO Poisoning than Analogous Single-Site Catalysts for Ethylene Hydrogenation and Hydrogen–Deuterium Exchange. ACS Catalysis, 2019, 9, 9545-9553.	11.2	25
13	Rhodium pair-sites on magnesium oxide: Synthesis, characterization, and catalysis of ethylene hydrogenation. Journal of Catalysis, 2016, 338, 12-20.	6.2	24
14	Decompositionâ€Assembly of Tetraphenylethylene Nanoparticles With Uniform Size and Aggregationâ€Induced Emission property. Macromolecular Rapid Communications, 2012, 33, 1584-1589.	3.9	21
15	lmine Metathesis Catalyzed by a Silica-Supported Hafnium Imido Complex. ACS Catalysis, 2018, 8, 9440-9446.	11.2	20
16	Docking of tetra-methyl zirconium to the surface of silica: a well-defined pre-catalyst for conversion of CO ₂ to cyclic carbonates. Chemical Communications, 2020, 56, 3528-3531.	4.1	16
17	Mechanistic Study of Hydroamination of Alkyne through Tantalum-Based Silica-Supported Surface Species. ACS Catalysis, 2019, 9, 8719-8725.	11.2	15
18	New Role of Pd Hydride as a Sensor of Surface Pd Distributions in Pdâ^'Au Catalysts. ChemCatChem, 2020, 12, 717-721.	3.7	12

#	Article	IF	CITATIONS
19	Supported cluster catalysts synthesized to be small, simple, selective, and stable. Faraday Discussions, 2018, 208, 9-33.	3.2	8
20	Modulating the nanorods protrusion from poly(allylamine hydrochloride)-g-pyrene microcapsules by 1-pyrenesulfonic acid sodium salt. Journal of Colloid and Interface Science, 2013, 405, 10-16.	9.4	3
21	Tungsten Catalyst Incorporating a Wellâ€Defined Tetracoordinated Aluminum Surface Ligand for Selective Metathesis of Propane, [(≡Siâ^'Oâ^'Siâ‰į)(≡Siâ^'Oâ^') ₂ Alâ^'Oâ^'W(≡C <i>t</i> Bu (H) ₂]. ChemCatChem, 2019, 11, 614-620.) 3.7	2