Ray Norbury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7372617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Night Owls and Lone Wolves. Biological Rhythm Research, 2022, 53, 1702-1710.	0.9	2
2	Distinct neural signatures of schizotypy and psychopathy during visual wordâ€nonword recognition. Human Brain Mapping, 2022, , .	3.6	2
3	Associations between diurnal preference, impulsivity and substance use in a young-adult student sample. Chronobiology International, 2021, 38, 79-89.	2.0	14
4	Associations between number of siblings, birth order, eating rate and adiposity in children and adults. Clinical Obesity, 2021, 11, e12438.	2.0	7
5	Loneliness in the time of COVID. Chronobiology International, 2021, 38, 817-819.	2.0	7
6	Diurnal preference and depressive symptomatology: a meta-analysis. Scientific Reports, 2021, 11, 12003.	3.3	25
7	Diurnal Preference and Grey Matter Volume in a Large Population of Older Adults: Data from the UK Biobank. Journal of Circadian Rhythms, 2020, 18, 3.	1.3	15
8	The influence of subjective sleep quality on the association between eveningness and depressive symptoms. Biological Rhythm Research, 2019, 50, 534-542.	0.9	19
9	Chronotype, depression and hippocampal volume: cross-sectional associations from the UK Biobank. Chronobiology International, 2019, 36, 709-716.	2.0	12
10	Time to think: Subjective sleep quality, trait anxiety and university start time Psychiatry Research, 2019, 271, 214-219.	3.3	38
11	Exploring the effect of chronotype on hippocampal volume and shape: A combined approach. Chronobiology International, 2018, 35, 1027-1033.	2.0	13
12	Late chronotype is associated with enhanced amygdala reactivity and reduced fronto-limbic functional connectivity to fearful versus happy facial expressions. NeuroImage, 2018, 171, 355-363.	4.2	38
13	Altered resting-state connectivity within default mode network associated with late chronotype. Journal of Psychiatric Research, 2018, 102, 223-229.	3.1	21
14	Left entorhinal cortex and object recognition. NeuroReport, 2018, 29, 363-367.	1.2	4
15	Predicting Treatment Response in Depression: The Role of Anterior Cingulate Cortex. International Journal of Neuropsychopharmacology, 2018, 21, 988-996.	2.1	70
16	Reduced Effective Emotion Regulation in Night Owls. Journal of Biological Rhythms, 2017, 32, 369-375.	2.6	45
17	Negative emotional biases in late chronotypes. Biological Rhythm Research, 2017, 48, 151-155.	0.9	19
18	A Bibliometric Analysis of the Top 100 Most Cited Chronotype Research Papers. Journal of Circadian Rhythms, 2017, 15, 2.	1.3	5

2

RAY NORBURY

#	Article	IF	CITATIONS
19	Effect of chronotype on emotional processing and risk taking. Chronobiology International, 2016, 33, 406-418.	2.0	36
20	Muscle magnetic resonance imaging in congenital myasthenic syndromes. Muscle and Nerve, 2016, 54, 211-219.	2.2	24
21	Early changes in emotional processing as a marker of clinical response to SSRI treatment in depression. Translational Psychiatry, 2016, 6, e957-e957.	4.8	143
22	Effect of short-term escitalopram treatment on neural activation during emotional processing. Journal of Psychopharmacology, 2016, 30, 33-39.	4.0	14
23	Hippocampal volume in vulnerability and resilience to depression. Journal of Affective Disorders, 2016, 189, 199-202.	4.1	74
24	β-Adrenoceptor blockade modulates fusiform gyrus activity to black versus white faces. Psychopharmacology, 2015, 232, 2951-2958.	3.1	10
25	Short-term escitalopram treatment and hippocampal volume. Psychopharmacology, 2014, 231, 4579-4581.	3.1	7
26	When less is more: a functional magnetic resonance imaging study of verbal working memory in remitted depressed patients. Psychological Medicine, 2014, 44, 1197-1203.	4.5	21
27	Paradoxical effects of short-term antidepressant treatment in fMRI emotional processing models in volunteers with high neuroticism. Psychological Medicine, 2014, 44, 241-252.	4.5	62
28	The effect of the serotonin transporter polymorphism (5-HTTLPR) on amygdala function: a meta-analysis. Molecular Psychiatry, 2013, 18, 512-520.	7.9	199
29	Short-term SSRI treatment normalises amygdala hyperactivity in depressed patients. Psychological Medicine, 2012, 42, 2609-2617.	4.5	202
30	Early increase in marker of neuronal integrity with antidepressant treatment of major depression: 1H-magnetic resonance spectroscopy of N-acetyl-aspartate. International Journal of Neuropsychopharmacology, 2012, 15, 1541-1546.	2.1	30
31	Short-term antidepressant administration reduces negative self-referential processing in the medial prefrontal cortex in subjects at risk for depression. Molecular Psychiatry, 2012, 17, 503-510.	7.9	75
32	Decreased regional gray matter volume in S' allele carriers of the 5-HTTLPR triallelic polymorphism. Molecular Psychiatry, 2011, 16, 472-473.	7.9	32
33	Imaging vulnerability for depression. Molecular Psychiatry, 2011, 16, 1067-1068.	7.9	12
34	Neural correlates of the processing of self-referent emotional information in bulimia nervosa. Neuropsychologia, 2011, 49, 3272-3278.	1.6	19
35	Frontolimbic responses to emotional faces in young people at familial risk of depression. Journal of Affective Disorders, 2011, 130, 127-132.	4.1	56
36	Elevated cortical glutamate in young people at increased familial risk of depression. International Journal of Neuropsychopharmacology, 2011, 14, 255-259.	2.1	29

RAY NORBURY

#	Article	IF	CITATIONS
37	A single dose of mirtazapine modulates neural responses to emotional faces in healthy people. Psychopharmacology, 2010, 212, 625-634.	3.1	58
38	Increased neural response to fear in patients recovered from depression: a 3T functional magnetic resonance imaging study. Psychological Medicine, 2010, 40, 425-432.	4.5	62
39	Lack of effect of citalopram on magnetic resonance spectroscopy measures of glutamate and glutamine in frontal cortex of healthy volunteers. Journal of Psychopharmacology, 2010, 24, 1217-1221.	4.0	18
40	A Functional Magnetic Resonance Imaging Study of Verbal Working Memory in Young People at Increased Familial Risk of Depression. Biological Psychiatry, 2010, 67, 471-477.	1.3	40
41	Risk for depression and neural responses to fearful facial expressions of emotion. British Journal of Psychiatry, 2009, 194, 139-145.	2.8	106
42	Normal glutamate but elevated myo-inositol in anterior cingulate cortex in recovered depressed patients. Journal of Affective Disorders, 2009, 119, 186-189.	4.1	37
43	Short-term antidepressant treatment modulates amygdala response to happy faces. Psychopharmacology, 2009, 206, 197-204.	3.1	96
44	The effects of reboxetine on emotional processing in healthy volunteers: an fMRI study. Molecular Psychiatry, 2008, 13, 1011-1020.	7.9	62
45	Risk for depression is associated with neural biases in emotional categorisation. Neuropsychologia, 2008, 46, 2896-2903.	1.6	47
46	Long-term estrogen therapy and 5-HT2A receptor binding in postmenopausal women; a single photon emission tomography (SPET) study. Hormones and Behavior, 2008, 53, 61-68.	2.1	25
47	Affective modulation of anterior cingulate cortex in young people at increased familial risk of depression. British Journal of Psychiatry, 2008, 192, 356-361.	2.8	48
48	Short-term antidepressant treatment and facial processing. British Journal of Psychiatry, 2007, 190, 531-532.	2.8	99
49	Estrogen Therapy and brain muscarinic receptor density in healthy females: A SPET study. Hormones and Behavior, 2007, 51, 249-257.	2.1	53
50	Single dose antidepressant administration modulates the neural processing of self-referent personality trait words. NeuroImage, 2007, 37, 904-911.	4.2	45
51	In vivo imaging of muscarinic receptors in the aging female brain with (,)[I]-I-QNB and single photon emission tomography. Experimental Gerontology, 2005, 40, 137-145.	2.8	29
52	Oestrogen: brain ageing, cognition and neuropsychiatric disorder. The Journal of the British Menopause Society, 2004, 10, 118-122.	1.3	10
53	SPET imaging of central muscarinic receptors with (R,R)[123I]-I-QNB: methodological considerations. Nuclear Medicine and Biology, 2004, 31, 583-590.	0.6	24
54	Oestrogens, brain function and neuropsychiatric disorders. Current Opinion in Psychiatry, 2004, 17, 209-214.	6.3	6

RAY NORBURY

#	Article	IF	CITATIONS
55	X chromosome, estrogen, and brain development: implications for schizophrenia. , 2004, , 330-346.		2
56	In VivoEffects of Estrogen on Human Brain. Annals of the New York Academy of Sciences, 2003, 1007, 79-88.	3.8	16
57	The neuroprotective effects of estrogen on the aging brain. Experimental Gerontology, 2003, 38, 109-117.	2.8	83
58	Oestrogen, brain function, and neuropsychiatric disorders. Journal of Neurology, Neurosurgery and Psychiatry, 2003, 74, 837-840.	1.9	33