
Mark A J Huijbregts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7371908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovering Ecological Relationships in Flowing Freshwater Ecosystems. Frontiers in Ecology and Evolution, 2022, 9, .	2.2	2
2	Solution-focused sustainability assessments for the transition to the circular economy: The case of plastics in the automotive industry. Journal of Cleaner Production, 2022, 358, 131606.	9.3	9
3	Multiple stressors determine river ecological status at the European scale: Towards an integrated understanding of river status deterioration. Global Change Biology, 2021, 27, 1962-1975.	9.5	114
4	Threats of global warming to the world's freshwater fishes. Nature Communications, 2021, 12, 1701.	12.8	157
5	Towards a systematic method for assessing the impact of chemical pollution on ecosystem services of water systems. Journal of Environmental Management, 2021, 281, 111873.	7.8	17
6	Towards an ecosystem service-based method to quantify the filtration services of mussels under chemical exposure. Science of the Total Environment, 2021, 763, 144196.	8.0	11
7	Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environment International, 2020, 134, 105267.	10.0	165
8	Reliable and representative in silico predictions of freshwater ecotoxicological hazardous concentrations. Environment International, 2020, 134, 105334.	10.0	14
9	Mean Species Abundance as a Measure of Ecotoxicological Risk. Environmental Toxicology and Chemistry, 2020, 39, 2304-2313.	4.3	7
10	Chemical pollution imposes limitations to the ecological status of European surface waters. Scientific Reports, 2020, 10, 14825.	3.3	72
11	Effects of Dutch livestock production on human health and the environment. Science of the Total Environment, 2020, 737, 139702.	8.0	30
12	LCâ€IMPACT: A regionalized life cycle damage assessment method. Journal of Industrial Ecology, 2020, 24, 1201-1219.	5.5	80
13	Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology and Evolution, 2020, 4, 1060-1068.	7.8	336
14	Screeningâ€Level Estimates of Environmental Release Rates, Predicted Exposures, and Toxic Pressures of Currently Used Chemicals. Environmental Toxicology and Chemistry, 2020, 39, 1839-1851.	4.3	16
15	Reply to "Concerns About Reproducibility, Use of the Akaike Information Criterion, and Related Issues in Hoondert et al. 2019―and Focus in Developing QSARâ€Based Species Sensitivity Distributions. Environmental Toxicology and Chemistry, 2020, 39, 1302-1304.	4.3	0
16	Computational material flow analysis for thousands of chemicals of emerging concern in European waters. Journal of Hazardous Materials, 2020, 397, 122655.	12.4	31
17	Chemical mixtures affect freshwater species assemblages: from problems to solutions. Current Opinion in Environmental Science and Health, 2019, 11, 78-89.	4.1	10
18	QSARâ€Based Estimation of Species Sensitivity Distribution Parameters: An Exploratory Investigation. Environmental Toxicology and Chemistry, 2019, 38, 2764-2770.	4.3	18

#	Article	IF	CITATIONS
19	Risk-management tool for environmental prioritization of pharmaceuticals based on emissions from hospitals. Science of the Total Environment, 2019, 694, 133733.	8.0	11
20	Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12 386 chemicals. Environmental Toxicology and Chemistry, 2019, 38, 905-917.	4.3	168
21	Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA Journal, 2019, 17, e05634.	1.8	201
22	Aquatic risks from human pharmaceuticals—modelling temporal trends of carbamazepine and ciprofloxacin at the global scale. Environmental Research Letters, 2019, 14, 034003.	5.2	39
23	Confronting variability with uncertainty in the ecotoxicological impact assessment of down-the-drain products. Environment International, 2019, 126, 37-45.	10.0	18
24	Exploring the â€~solution space' is key: SOLUTIONS recommends an early-stage assessment of options to protect and restore water quality against chemical pollution. Environmental Sciences Europe, 2019, 31, .	5.5	19
25	Strengthen the European collaborative environmental research to meet European policy goals for achieving a sustainable, non-toxic environment. Environmental Sciences Europe, 2019, 31, .	5.5	7
26	Using field data to quantify chemical impacts on wildlife population viability. Ecological Applications, 2018, 28, 771-785.	3.8	8
27	Simplifying environmental mixtures—An aquatic exposureâ€based approach via land use scenarios. Environmental Toxicology and Chemistry, 2018, 37, 671-673.	4.3	2
28	Prospective mixture risk assessment and management prioritizations for river catchments with diverse land uses. Environmental Toxicology and Chemistry, 2018, 37, 715-728.	4.3	35
29	Ecosystem quality in LCIA: status quo, harmonization, and suggestions for the way forward. International Journal of Life Cycle Assessment, 2018, 23, 1995-2006.	4.7	30
30	Prospective aquatic risk assessment for chemical mixtures in agricultural landscapes. Environmental Toxicology and Chemistry, 2018, 37, 674-689.	4.3	23
31	Estimation of chemical emissions from down-the-drain consumer products using consumer survey data at a country and wastewater treatment plant level. Chemosphere, 2018, 193, 32-41.	8.2	10
32	Harmonised risk assessment for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals: a food and feed safety perspective. Toxicology Letters, 2018, 295, S37-S38.	0.8	0
33	The regulatory challenge of chemicals in the environment: Toxicity testing, risk assessment, and decision-making models. Regulatory Toxicology and Pharmacology, 2018, 99, 289-295.	2.7	11
34	Toward harmonizing ecotoxicity characterization in life cycle impact assessment. Environmental Toxicology and Chemistry, 2018, 37, 2955-2971.	4.3	62
35	Method selection for sustainability assessments: The case of recovery of resources from waste water. Journal of Environmental Management, 2017, 197, 221-230.	7.8	31
36	Mitigation options for chemicals of emerging concern in surface waters; operationalising solutions-focused risk assessment. Environmental Science: Water Research and Technology, 2017, 3, 403-414.	2.4	25

#	Article	IF	CITATIONS
37	LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. Journal of Cleaner Production, 2017, 161, 957-967.	9.3	141
38	Environmental assessment of bioâ€based chemicals in earlyâ€stage development: a review of methods and indicators. Biofuels, Bioproducts and Biorefining, 2017, 11, 701-718.	3.7	31
39	An expanded conceptual framework for solution-focused management of chemical pollution in European waters. Environmental Sciences Europe, 2017, 29, 13.	5.5	25
40	ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal of Life Cycle Assessment, 2017, 22, 138-147.	4.7	1,905
41	Identification and ranking of environmental threats with ecosystem vulnerability distributions. Scientific Reports, 2017, 7, 9298.	3.3	17
42	The toxic exposure of flamingos to per - and Polyfluoroalkyl substances (PFAS) from firefighting foam applications in Bonaire. Marine Pollution Bulletin, 2017, 124, 102-111.	5.0	20
43	Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources. Science of the Total Environment, 2017, 576, 720-737.	8.0	255
44	Future needs and recommendations in the development of species sensitivity distributions: Estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures. Integrated Environmental Assessment and Management, 2017, 13, 664-674.	2.9	88
45	The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains. Sustainability, 2017, 9, 279.	3.2	78
46	The influence of uncertainty and location-specific conditions on the environmental prioritisation of human pharmaceuticals in Europe. Environment International, 2016, 91, 301-311.	10.0	12
47	Eco-epidemiology of aquatic ecosystems: Separating chemicals from multiple stressors. Science of the Total Environment, 2016, 573, 1303-1319.	8.0	39
48	On the importance of trait interrelationships for understanding environmental responses of stream macroinvertebrates. Freshwater Biology, 2016, 61, 181-194.	2.4	52
49	How Many Environmental Impact Indicators Are Needed in the Evaluation of Product Life Cycles?. Environmental Science & Technology, 2016, 50, 3913-3919.	10.0	95
50	Definition and use of Solution-focused Sustainability Assessment: A novel approach to generate, explore and decide on sustainable solutions for wicked problems. Environment International, 2016, 91, 319-331.	10.0	37
51	<i>In response</i> : The evidence—What actions are needed to effectively transfer from science to policy? An academic perspective. Environmental Toxicology and Chemistry, 2015, 34, 1208-1210.	4.3	2
52	An Identification Key for Selecting Methods for Sustainability Assessments. Sustainability, 2015, 7, 2490-2512.	3.2	52
53	Harmonizing the Assessment of Biodiversity Effects from Land and Water Use within LCA. Environmental Science & Technology, 2015, 49, 3584-3592.	10.0	51
54	A tiered approach for environmental impact assessment of chemicals and their alternatives within the context of socio-economic analyses. Journal of Cleaner Production, 2015, 108, 955-964.	9.3	9

#	Article	IF	CITATIONS
55	How to assess species richness along single environmental gradients? Implications of potential versus realized species distributions. Environmental Pollution, 2015, 200, 120-125.	7.5	6
56	The SOLUTIONS project: Challenges and responses for present and future emerging pollutants in land and water resources management. Science of the Total Environment, 2015, 503-504, 22-31.	8.0	163
57	Deriving Field-Based Species Sensitivity Distributions (f-SSDs) from Stacked Species Distribution Models (S-SDMs). Environmental Science & Technology, 2014, 48, 14464-14471.	10.0	19
58	Chemical Footprints: Thin Boundaries Support Environmental Quality Management. Environmental Science & Technology, 2014, 48, 13025-13026.	10.0	7
59	Assessing predictive uncertainty in comparative toxicity potentials of triazoles. Environmental Toxicology and Chemistry, 2014, 33, 293-301.	4.3	5
60	Developing a foundation for ecoâ€epidemiological assessment of aquatic ecological status over large geographic regions utilizing existing data resources and models. Environmental Toxicology and Chemistry, 2014, 33, 1665-1677.	4.3	26
61	Global guidance on environmental life cycle impact assessment indicators: findings of the scoping phase. International Journal of Life Cycle Assessment, 2014, 19, 962-967.	4.7	62
62	Unraveling the relationships between freshwater invertebrate assemblages and interacting environmental factors. Freshwater Science, 2014, 33, 1148-1158.	1.8	22
63	Beyond Safe Operating Space: Finding Chemical Footprinting Feasible. Environmental Science & Technology, 2014, 48, 6057-6059.	10.0	38
64	Impacts of River Water Consumption on Aquatic Biodiversity in Life Cycle Assessment—A Proposed Method, and a Case Study for Europe. Environmental Science & Technology, 2014, 48, 3236-3244.	10.0	43
65	Definition and Applications of a Versatile Chemical Pollution Footprint Methodology. Environmental Science & Technology, 2014, 48, 10588-10597.	10.0	58
66	Comparing responses of freshwater fish and invertebrate community integrity along multiple environmental gradients. Ecological Indicators, 2014, 43, 215-226.	6.3	40
67	A spatially explicit data-driven approach to assess the effect of agricultural land occupation on species groups. International Journal of Life Cycle Assessment, 2014, 19, 758-769.	4.7	26
68	The Flash Environmental Assessment Tool: Worldwide first aid for chemical accidents response, pro action, prevention and preparedness. Environment International, 2014, 72, 140-156.	10.0	11
69	Quantifying the Trade-off between Parameter and Model Structure Uncertainty in Life Cycle Impact Assessment. Environmental Science & Technology, 2013, 47, 9274-9280.	10.0	33
70	Species richness–phosphorus relationships for lakes and streams worldwide. Global Ecology and Biogeography, 2013, 22, 1304-1314.	5.8	42
71	Assessing the Importance of Spatial Variability versus Model Choices in Life Cycle Impact Assessment: The Case of Freshwater Eutrophication in Europe. Environmental Science & Technology, 2013, 47, 13565-13570.	10.0	67

Sensitivity of species to chemicals: Dose $\hat{a} \in \hat{c}$ response characteristics for various test types (LC50, LR50) Tj ETQq0 0.0 rgBT /Oyerlock 10

#	Article	IF	CITATIONS
73	Spatially explicit prioritization of human antibiotics and antineoplastics in Europe. Environment International, 2013, 51, 13-26.	10.0	49
74	Statistical uncertainty in hazardous terrestrial concentrations estimated with aquatic ecotoxicity data. Chemosphere, 2013, 93, 366-372.	8.2	6
75	Global assessment of the effects of terrestrial acidification on plant species richness. Environmental Pollution, 2013, 174, 10-15.	7.5	62
76	Including the Introduction of Exotic Species in Life Cycle Impact Assessment: The Case of Inland Shipping. Environmental Science & amp; Technology, 2013, 47, 13934-13940.	10.0	30
77	Addressing Geographic Variability in the Comparative Toxicity Potential of Copper and Nickel in Soils. Environmental Science & Technology, 2013, 47, 3241-3250.	10.0	49
78	Handling Fish Mixture Exposures in Risk Assessment. Fish Physiology, 2013, , 481-524.	0.8	0
79	Do interspecies correlation estimations increase the reliability of toxicity estimates for wildlife?. Ecotoxicology and Environmental Safety, 2012, 80, 238-243.	6.0	30
80	Ecosystem services: a useful concept for soil policy making!. Current Opinion in Environmental Sustainability, 2012, 4, 578-585.	6.3	63
81	Predicted mixture toxic pressure relates to observed fraction of benthic macrofauna species impacted by contaminant mixtures. Environmental Toxicology and Chemistry, 2012, 31, 2175-2188.	4.3	59
82	Including ecotoxic impacts on warmâ€blooded predators in life cycle impact assessment. Integrated Environmental Assessment and Management, 2012, 8, 372-378.	2.9	9
83	Sensitivity of native and non-native mollusc species to changing river water temperature and salinity. Biological Invasions, 2012, 14, 1187-1199.	2.4	65
84	State of the art of contaminated site management in The Netherlands: Policy framework and risk assessment tools. Science of the Total Environment, 2012, 427-428, 1-10.	8.0	99
85	Making ecosystem reality checks the status quo. Environmental Toxicology and Chemistry, 2012, 31, 459-468.	4.3	24
86	Characterization Factors for Water Consumption and Greenhouse Gas Emissions Based on Freshwater Fish Species Extinction. Environmental Science & Technology, 2011, 45, 5272-5278.	10.0	114
87	Toward Meaningful End Points of Biodiversity in Life Cycle Assessment. Environmental Science & Technology, 2011, 45, 70-79.	10.0	173
88	Do We Need a Paradigm Shift in Life Cycle Impact Assessment?. Environmental Science & Technology, 2011, 45, 3833-3834.	10.0	62
89	Value Choices in Life Cycle Impact Assessment of Stressors Causing Human Health Damage. Journal of Industrial Ecology, 2011, 15, 796-815.	5.5	46
90	Regional ecotoxicological hazards associated with anthropogenic enrichment of heavy metals. Environmental Geochemistry and Health, 2011, 33, 409-426.	3.4	9

#	Article	IF	CITATIONS
91	USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. International Journal of Life Cycle Assessment, 2011, 16, 701-709.	4.7	164
92	Field sensitivity distribution of macroinvertebrates for phosphorus in inland waters. Integrated Environmental Assessment and Management, 2011, 7, 280-286.	2.9	34
93	Ecological Risk Assessment of Diffuse and Local Soil Contamination Using Species Sensitivity Distributions. , 2011, , 625-691.		10
94	The clearwater consensus: the estimation of metal hazard in fresh water. International Journal of Life Cycle Assessment, 2010, 15, 143-147.	4.7	48
95	Characterization Factors for Thermal Pollution in Freshwater Aquatic Environments. Environmental Science & Technology, 2010, 44, 9364-9369.	10.0	93
96	New Method for Calculating Comparative Toxicity Potential of Cationic Metals in Freshwater: Application to Copper, Nickel, and Zinc. Environmental Science & Technology, 2010, 44, 5195-5201.	10.0	71
97	Transformation Products in the Life Cycle Impact Assessment of Chemicals. Environmental Science & Technology, 2010, 44, 1004-1009.	10.0	40
98	Pesticide ecotoxicological effect factors and their uncertainties for freshwater ecosystems. International Journal of Life Cycle Assessment, 2009, 14, 43-51.	4.7	35
99	USES-LCA 2.0—a global nested multi-media fate, exposure, and effects model. International Journal of Life Cycle Assessment, 2009, 14, 282-284.	4.7	131
100	European River Basins at Risk. Integrated Environmental Assessment and Management, 2009, 5, 2.	2.9	4
101	Uncertainty in Environmental Risk Assessment: Implications for Risk-Based Management of River Basins. Integrated Environmental Assessment and Management, 2009, 5, 27.	2.9	23
102	The impact of an additional ecotoxicity test on ecological quality standards. Ecotoxicology and Environmental Safety, 2009, 72, 2037-2045.	6.0	10
103	Toward a holistic and riskâ€based management of european river basins. Integrated Environmental Assessment and Management, 2009, 5, 5-10.	2.9	36
104	Diagnosis of Ecosystem Impairment in a Multiple-Stress Context—How to Formulate Effective River Basin Management Plans. Integrated Environmental Assessment and Management, 2009, 5, 38.	2.9	55
105	USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. International Journal of Life Cycle Assessment, 2008, 13, 532-546.	4.7	1,180
106	Ranking of agricultural pesticides in the rhineâ€meuseâ€scheldt basin based on toxic pressure in marine ecosystems. Environmental Toxicology and Chemistry, 2008, 27, 737-745.	4.3	16
107	SPECIES SENSITIVITY DISTRIBUTIONS FOR SUSPENDED CLAYS, SEDIMENT BURIAL, AND GRAIN SIZE CHANGE IN THE MARINE ENVIRONMENT. Environmental Toxicology and Chemistry, 2008, 27, 1006.	4.3	78
108	Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Science of the Total Environment, 2008, 390, 227-240.	8.0	399

#	Article	IF	CITATIONS
109	Ecological effects of diffuse mixed pollution are site-specific and require higher-tier risk assessment to improve site management decisions: A discussion paper. Science of the Total Environment, 2008, 406, 503-517.	8.0	42
110	Determining metal origins and availability in fluvial deposits by analysis of geochemical baselines and solid–solution partitioning measurements and modelling. Environmental Pollution, 2008, 156, 832-839.	7.5	39
111	Quantitative Lines of Evidence for Screening-Level Diagnostic Assessment of Regional Fish Community Impacts: A Comparison of Spatial Database Evaluation Methods. Environmental Science & Technology, 2008, 42, 9412-9418.	10.0	22
112	Transgenic Maize Containing the Cry1Ab Protein Ephemerally Enhances Soil Microbial Communities. Ambio, 2007, 36, 359-361.	5.5	6
113	Novel view on predicting acute toxicity: Decomposing toxicity data in species vulnerability and chemical potency. Ecotoxicology and Environmental Safety, 2007, 67, 311-322.	6.0	24
114	Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data. Environmental Pollution, 2007, 146, 428-436.	7.5	43
115	Including Sorption to Black Carbon in Modeling Bioaccumulation of Polycyclic Aromatic Hydrocarbons:Â Uncertainty Analysis and Comparison to Field Data. Environmental Science & Technology, 2007, 41, 2738-2744.	10.0	37
116	Time Horizon Dependent Characterization Factors for Acidification in Life-Cycle Assessment Based on Forest Plant Species Occurrence in Europe. Environmental Science & Technology, 2007, 41, 922-927.	10.0	69
117	Uncertainty in msPAF-Based Ecotoxicological Effect Factors for Freshwater Ecosystems in Life Cycle Impact Assessment. Integrated Environmental Assessment and Management, 2007, 3, 203.	2.9	42
118	Empirical maximum lifespan of earthworms is twice that of mice. Age, 2007, 29, 229-231.	3.0	23
119	Is Cumulative Fossil Energy Demand a Useful Indicator for the Environmental Performance of Products?. Environmental Science & Technology, 2006, 40, 641-648.	10.0	356
120	Estimating the Impact of High-Production-Volume Chemicals on Remote Ecosystems by Toxic Pressure Calculation. Environmental Science & Technology, 2006, 40, 1573-1580.	10.0	42
121	PREDICTIVE MODELS ATTRIBUTE EFFECTS ON FISH ASSEMBLAGES TO TOXICITY AND HABITAT ALTERATION. , 2006, 16, 1295-1310.		95
122	PREDICTED EFFECTS OF TOXICANT MIXTURES ARE CONFIRMED BY CHANGES IN FISH SPECIES ASSEMBLAGES IN OHIO, USA, RIVERS. Environmental Toxicology and Chemistry, 2006, 25, 1094.	4.3	92
123	CALCULATING LIFE-CYCLE ASSESSMENT EFFECT FACTORS FROM POTENTIALLY AFFECTED FRACTION-BASED ECOTOXICOLOGICAL RESPONSE FUNCTIONS. Environmental Toxicology and Chemistry, 2005, 24, 1573.	4.3	45
124	COMPLEX MIXTURE TOXICITY FOR SINGLE AND MULTIPLE SPECIES: PROPOSED METHODOLOGIES. Environmental Toxicology and Chemistry, 2005, 24, 2665.	4.3	322
125	Short-term ecological risks of depositing contaminated sediment on arable soil. Ecotoxicology and Environmental Safety, 2005, 60, 1-14.	6.0	10
126	Human population intake fractions and environmental fate factors of toxic pollutants in life cycle impact assessment. Chemosphere, 2005, 61, 1495-1504.	8.2	64

#	Article	IF	CITATIONS
127	LOCATION-SPECIFIC ECOTOXICOLOGICAL RISK ASSESSMENT OF METAL-POLLUTED SOILS. Environmental Toxicology and Chemistry, 2004, 23, 2769.	4.3	41
128	Evaluating Uncertainty in Environmental Life-Cycle Assessment. A Case Study Comparing Two Insulation Options for a Dutch One-Family Dwelling. Environmental Science & Technology, 2003, 37, 2600-2608.	10.0	287
129	Metal uptake from soils and soil–sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera). Ecotoxicology and Environmental Safety, 2003, 54, 277-289.	6.0	79
130	Determination of Field Effects of Contaminants—Significance of Pollution-Induced Community Tolerance. Human and Ecological Risk Assessment (HERA), 2002, 8, 1035-1055.	3.4	75
131	Effects of Zinc Contamination on a Natural Nematode Community in Outdoor Soil Mesocosms. Archives of Environmental Contamination and Toxicology, 2002, 42, 205-216.	4.1	42
132	Quantification of Metal Bioavailability for Lettuce (Lactuca sativa L.) in Field Soils. Archives of Environmental Contamination and Toxicology, 2000, 39, 420-430.	4.1	106
133	Prediction of Metal Bioavailability in Dutch Field Soils for the Oligochaete Enchytraeus crypticus. Ecotoxicology and Environmental Safety, 1999, 43, 170-186.	6.0	105
134	Relating Environmental Availability to Bioavailability: Soil-Type-Dependent Metal Accumulation in the Oligochaete Eisenia andrei. Ecotoxicology and Environmental Safety, 1999, 44, 294-310.	6.0	163
135	Application of uncertainty and variability in LCA. International Journal of Life Cycle Assessment, 1998, 3, 273.	4.7	408
136	A Conceptual Framework for Implementation of Bioavailability of Metals for Environmental Management Purposes. Ecotoxicology and Environmental Safety, 1997, 37, 163-172.	6.0	167
137	Single and Joint Toxic Effects of Copper and Zinc on Reproduction ofEnchytraeus crypticusin Relation to Sorption of Metals in Soils. Ecotoxicology and Environmental Safety, 1997, 38, 108-121.	6.0	84
138	Heavy-metal adaptation in terrestrial invertebrates: A review of occurrence, genetics, physiology and ecological consequences. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1993, 106, 11-38.	0.5	147
139	Adaptation to soil pollution by cadmium excretion in natural populations of Orchesella cincta (L.) (Collembola). Archives of Environmental Contamination and Toxicology, 1992, 22, 146-156.	4.1	110

Allozyme variation in reference and metal-exposed natural populations of Orchesella cincta (insecta:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf