
Keisuke Fukushi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7371603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reconstruction of pH, redox condition, and concentrations of major components in ancient liquid water from the Karasburg member, Murray formation, Gale Crater, Mars. Geochimica Et Cosmochimica Acta, 2022, 325, 129-151.	3.9	4
2	Characteristics of Lake Sediment from Southwestern Mongolia and Comparison with Meteorological Data. Geosciences (Switzerland), 2022, 12, 7.	2.2	4
3	Arsenic and uranium contamination of Orog Lake in the Valley of Gobi Lakes, Mongolia: Field evidence of conservative accumulation of U in an alkaline, closed-basin lake during evaporation. Journal of Hazardous Materials, 2022, 436, 129017.	12.4	10
4	Seasonal Variation and Vertical Distribution of Inorganic Nutrients in a Small Artificial Lake, Lake Bulan, in Mongolia. Water (Switzerland), 2022, 14, 1916.	2.7	1
5	Characterization of groundwater chemistry beneath Gale Crater on early Mars by hydrothermal experiments. Icarus, 2022, 386, 115149.	2.5	0
6	Mo Contamination in Rivers near the Erdenet Mining Area, Mongolia: Field Evidence of High Mobility of Mo at pH >8. ACS ES&T Water, 2021, 1, 1686-1694.	4.6	2
7	Parameterization of adsorption onto minerals by Extended Triple Layer Model. Applied Geochemistry, 2021, 134, 105087.	3.0	4
8	Field Investigations of Chemical Partitioning and Aqueous Chemistry of Freezing Closedâ€Basin Lakes in Mongolia as Analogs of Subsurface Brines on Icy Bodies. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006972.	3.6	2
9	Anaerobic Microscopic Analysis of Ferrous Saponite and Its Sensitivity to Oxidation by Earth's Air: Lessons Learned for Analysis of Returned Samples from Mars and Carbonaceous Asteroids. Minerals (Basel, Switzerland), 2021, 11, 1244.	2.0	4
10	A Robust Model for Prediction of U(VI) Adsorption onto Ferrihydrite Consistent with Spectroscopic Observations. Environmental Science & amp; Technology, 2020, 54, 2304-2313.	10.0	25
11	Ecological and Human Health Risk Assessment of Heavy Metal Pollution in the Soil of the Ger District in Ulaanbaatar, Mongolia. International Journal of Environmental Research and Public Health, 2020, 17, 4668.	2.6	14
12	In Situ Formation of Monohydrocalcite in Alkaline Saline Lakes of the Valley of Gobi Lakes: Prediction for Mg, Ca, and Total Dissolved Carbonate Concentrations in Enceladus' Ocean and Alkaline-Carbonate Ocean Worlds. Minerals (Basel, Switzerland), 2020, 10, 669.	2.0	12
13	Rare earth element distributions in rivers and sediments from the Erdenet Cu–Mo mining area, Mongolia. Applied Geochemistry, 2020, 123, 104800.	3.0	13
14	Hydrogeochemical Study on Closed-Basin Lakes in Cold and Semi-Arid Climates of the Valley of the Gobi Lakes, Mongolia: Implications for Hydrology and Water Chemistry of Paleolakes on Mars. Minerals (Basel, Switzerland), 2020, 10, 792.	2.0	11
15	Comparison of Chemical Speciation of Lead, Arsenic, and Cadmium in Contaminated Soils from a Historical Mining Site: Implications for Different Mobilities of Heavy Metals. ACS Earth and Space Chemistry, 2020, 4, 1064-1077.	2.7	23
16	Simple, Reproducible Synthesis of Pure Monohydrocalcite with Low Mg Content. Minerals (Basel,) Tj ETQq0 0 0 i	rgBT /Over 2.0	lock 10 Tf 50

17	Semiarid climate and hyposaline lake on early Mars inferred from reconstructed water chemistry at Gale. Nature Communications, 2019, 10, 4896.	12.8	49
18	Highly Oxidizing Aqueous Environments on Early Mars Inferred From Scavenging Pattern of Trace Metals on Manganese Oxides. Journal of Geophysical Research E: Planets, 2019, 124, 1282-1295.	3.6	19

Кеізике Ғикизні

#	Article	IF	CITATIONS
19	Superior removal of selenite by periclase during transformation to brucite under high-pH conditions. Journal of Hazardous Materials, 2019, 371, 370-380.	12.4	11
20	Amorphous Silica-Promoted Lysine Dimerization: a Thermodynamic Prediction. Origins of Life and Evolution of Biospheres, 2018, 48, 23-34.	1.9	12
21	Structure of calcite–aqueous NaCl solution interfaces from ambient to elevated temperatures. Journal of Mineralogical and Petrological Sciences, 2018, 113, 232-244.	0.9	1
22	Distribution and Chemical Speciation of Molybdenum in River and Pond Sediments Affected by Mining Activity in Erdenet City, Mongolia. Minerals (Basel, Switzerland), 2018, 8, 288.	2.0	20
23	Control of Water Chemistry in Alkaline Lakes: Solubility of Monohydrocalcite and Amorphous Magnesium Carbonate in CaCl ₂ –MgCl ₂ –Na ₂ CO ₃ Solutions. ACS Earth and Space Chemistry, 2018, 2, 735-744.	2.7	28
24	Magnetic measurements of roadside topsoil pollution in an active volcanic region: Mt. Hakusan, Japan. Water and Environment Journal, 2018, 32, 556-565.	2.2	0
25	Speciation of magnesium in monohydrocalcite: XANES, ab initio and geochemical modeling. Geochimica Et Cosmochimica Acta, 2017, 213, 457-474.	3.9	19
26	Glycine Polymerization on Oxide Minerals. Origins of Life and Evolution of Biospheres, 2017, 47, 123-143.	1.9	36
27	Modelling Sorption Processes of Trace Elements by Earth Surface Materials. Journal of Geography (Chigaku Zasshi), 2017, 126, 325-341.	0.3	4
28	Overview of the Special Issue "Rock Weathering from Nanoscale to Global Scale: 1. Microscopic Weathering and Basic Studies― Journal of Geography (Chigaku Zasshi), 2017, 126, 263-265.	0.3	1
29	Overview of the Special Issue "Rock Weathering from Nanoscale to Global Scale: 2. Macroscopic Weathering and Applied Studies― Journal of Geography (Chigaku Zasshi), 2017, 126, 407-408.	0.3	0
30	Introduction to the Special Issue "Rock Weathering from Nanoscale to Global Scale: 2. Macroscopic Weathering and Applied Studies― Journal of Geography (Chigaku Zasshi), 2017, 126, 409-411.	0.3	0
31	High-temperature hydrothermal activities around suboceanic Moho: An example from diopsidite and anorthosite in Wadi Fizh, Oman ophiolite. Lithos, 2016, 263, 66-87.	1.4	17
32	Predictive model for Pb(II) adsorption on soil minerals (oxides and low-crystalline aluminum silicate) consistent with spectroscopic evidence. Geochimica Et Cosmochimica Acta, 2016, 190, 134-155.	3.9	16
33	Arsenate sorption on monohydrocalcite by coprecipitation during transformation to aragonite. Journal of Hazardous Materials, 2016, 304, 110-117.	12.4	13
34	Centennial-Scale Environmental Changes in Terhiin Tsagaan Lake, Mongolia Inferred from Lacustrine Sediment: Preliminary Results. , 2015, , 25-44.		3
35	Prediction of Intrinsic Cesium Desorption from Na-Smectite in Mixed Cation Solutions. Environmental Science & Technology, 2015, 49, 10398-10405.	10.0	11
36	Palaeohydrological and Palaeoenvironmental Fluctuations of the Historic Eurimji Lake. , 2015, , 143-161.		1

Кеізике Ғикизні

#	Article	IF	CITATIONS
37	Salinity dependence of 226Ra adsorption on montmorillonite and kaolinite. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299, 569-575.	1.5	17
38	Effects of Ions on the OH Stretching Band of Water as Revealed by ATR-IR Spectroscopy. Journal of Solution Chemistry, 2014, 43, 1055-1077.	1.2	76
39	Desorption of Intrinsic Cesium from Smectite: Inhibitive Effects of Clay Particle Organization on Cesium Desorption. Environmental Science & amp; Technology, 2014, 48, 10743-10749.	10.0	40
40	Redistribution of Pb during transformation of monohydrocalcite to aragonite. Chemical Geology, 2014, 387, 133-143.	3.3	12
41	Surface complexation modeling for sulfate adsorption on ferrihydrite consistent with in situ infrared spectroscopic observations. Applied Geochemistry, 2013, 36, 92-103.	3.0	50
42	Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: Modeling competitive adsorption consistent with spectroscopic and molecular evidence. Geochimica Et Cosmochimica Acta, 2013, 106, 404-428.	3.9	147
43	Carbon isotope stratigraphy and depositional oxia through Cenomanian/Turonian boundary sequences (Upper Cretaceous) in New Zealand. Cretaceous Research, 2013, 40, 61-80.	1.4	31
44	Formation condition of monohydrocalcite from CaCl2–MgCl2–Na2CO3 solutions. Geochimica Et Cosmochimica Acta, 2013, 100, 217-231.	3.9	67
45	Sorption of Eu(III) on Granite: EPMA, LA–ICP–MS, Batch and Modeling Studies. Environmental Science & Technology, 2013, 47, 12811-12818.	10.0	29
46	Distribution and mineralogy of radioactive Cs in reservoir sediment contaminated by the Fukushima nuclear accident. Journal of Mineralogical and Petrological Sciences, 2013, 109, 23-27.	0.9	9
47	Export of ¹³⁴ Cs and ¹³⁷ Cs in the Fukushima river systems at heavy rains by Typhoon Roke in September 2011. Biogeosciences, 2013, 10, 6215-6223.	3.3	139
48	Thermoluminescence color image analysis of sediments from Lake Khuvsgul, Mongolia, and its potential to investigate paleoenvironmental change. Quaternary Geochronology, 2012, 10, 156-159.	1.4	0
49	Individual and combined effects of water quality and empty bed contact time on As(V) removal by a fixed-bed iron oxide adsorber: Implication for silicate precoating. Water Research, 2012, 46, 5061-5070.	11.3	36
50	Chemical overprinting of magmatism by weathering: A practical method for evaluating the degree of chemical weathering of granitoids. Applied Geochemistry, 2012, 27, 796-805.	3.0	17
51	Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite. Journal of Colloid and Interface Science, 2012, 384, 128-136.	9.4	71
52	Synthesis of Nano-sized Boehmites for Optimum Phosphate Sorption. Separation Science and Technology, 2011, 46, 818-824.	2.5	16
53	Monohydrocalcite: a promising remediation material for hazardous anions. Science and Technology of Advanced Materials, 2011, 12, 064702.	6.1	45
54	Quantification of the Effects of Organic and Carbonate Buffers on Arsenate and Phosphate Adsorption on a Goethite-Based Granular Porous Adsorbent. Environmental Science & Technology, 2011, 45, 561-568.	10.0	30

Кеізике Ғикизні

#	Article	IF	CITATIONS
55	Phosphate sorption on monohydrocalcite. Journal of Mineralogical and Petrological Sciences, 2011, 106, 109-113.	0.9	14
56	Studies of adsorption of anionic species on minerals. Ganseki Kobutsu Kagaku, 2010, 39, 19-25.	0.1	0
57	Prediction of iodate adsorption and surface speciation on oxides by surface complexation modeling. Geochimica Et Cosmochimica Acta, 2010, 74, 6000-6013.	3.9	50
58	Iron–bentonite interactions in the Kawasaki bentonite deposit, Zao area, Japan. Applied Geochemistry, 2010, 25, 1120-1132.	3.0	10
59	Extended Triple Layer Modeling of Arsenate and Phosphate Adsorption on a Goethite-based Granular Porous Adsorbent. Environmental Science & Technology, 2010, 44, 3388-3394.	10.0	42
60	Prediction of iodide adsorption on oxides by surface complexation modeling with spectroscopic confirmation. Journal of Colloid and Interface Science, 2009, 332, 309-316.	9.4	59
61	Transformation kinetics of monohydrocalcite to aragonite in aqueous solutions. Journal of Mineralogical and Petrological Sciences, 2008, 103, 345-349.	0.9	50
62	Natural attenuation of antimony in mine drainage water. Geochemical Journal, 2007, 41, 17-27.	1.0	31
63	A surface complexation model for sulfate and selenate on iron oxides consistent with spectroscopic and theoretical molecular evidence. Geochimica Et Cosmochimica Acta, 2007, 71, 1-24.	3.9	114
64	A predictive model (ETLM) for arsenate adsorption and surface speciation on oxides consistent with spectroscopic and theoretical molecular evidence. Geochimica Et Cosmochimica Acta, 2007, 71, 3717-3745.	3.9	87
65	Environmental Behavior and Management of Hazardous Inorganic Anions in Nature. Journal of MMIJ, 2007, 123, 132-144.	0.3	9
66	Anion Adsorption on Oxide Surfaces:Â Inclusion of the Water Dipole in Modeling the Electrostatics of Ligand Exchange. Environmental Science & Technology, 2006, 40, 263-271.	10.0	102
67	A predictive model (ETLM) for As(III) adsorption and surface speciation on oxides consistent with spectroscopic data. Geochimica Et Cosmochimica Acta, 2006, 70, 3778-3802.	3.9	102
68	Using a Surface Complexation Model To Predict the Nature and Stability of Nanoparticles. Environmental Science & Technology, 2005, 39, 1250-1256.	10.0	57
69	Arsenate sorption on schwertmannite. American Mineralogist, 2004, 89, 1728-1734.	1.9	85
70	A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Applied Geochemistry, 2003, 18, 1267-1278.	3.0	230
71	Solid-Solution Reactions in As(V) Sorption by Schwertmannite. Environmental Science & Technology, 2003, 37, 3581-3586.	10.0	87