List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7371376/publications.pdf Version: 2024-02-01

FDIK S DIINKLE

#	Article	IF	CITATIONS
1	Indoor production of ornamental seedlings, vegetable transplants, and microgreens. , 2022, , 351-375.		4
2	Indoor lighting effects on plant nutritional compounds. , 2022, , 329-349.		2
3	A high daily light integral can influence photoperiodic flowering responses in long day herbaceous ornamentals. Scientia Horticulturae, 2022, 295, 110897.	3.6	3
4	Regulation of the Photon Spectrum on Growth and Nutritional Attributes of Baby-Leaf Lettuce at Harvest and during Postharvest Storage. Plants, 2021, 10, 549.	3.5	10
5	Increasing greenhouse production by spectral-shifting and unidirectional light-extracting photonics. Nature Food, 2021, 2, 434-441.	14.0	40
6	Growth Responses of Red-Leaf Lettuce to Temporal Spectral Changes. Frontiers in Plant Science, 2020, 11, 571788.	3.6	18
7	Regulation of extension growth and flowering of seedlings by blue radiation and the red to far-red ratio of sole-source lighting. Scientia Horticulturae, 2020, 272, 109478.	3.6	15
8	Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod. Scientia Horticulturae, 2020, 272, 109565.	3.6	79
9	Blue radiation signals and saturates photoperiodic flowering of several long-day plants at crop-specific photon flux densities. Scientia Horticulturae, 2020, 271, 109470.	3.6	10
10	Blue Radiation Interacts with Green Radiation to Influence Growth and Predominantly Controls Quality Attributes of Lettuce. Journal of the American Society for Horticultural Science, 2020, 145, 75-87.	1.0	44
11	Blue radiation attenuates the effects of the red to far-red ratio on extension growth but not on flowering. Environmental and Experimental Botany, 2019, 168, 103871.	4.2	31
12	Far-red radiation interacts with relative and absolute blue and red photon flux densities to regulate growth, morphology, and pigmentation of lettuce and basil seedlings. Scientia Horticulturae, 2019, 255, 269-280.	3.6	65
13	Substituting green or far-red radiation for blue radiation induces shade avoidance and promotes growth in lettuce and kale. Environmental and Experimental Botany, 2019, 162, 383-391.	4.2	70
14	Manipulating growth, color, and taste attributes of fresh cut lettuce by greenhouse supplemental lighting. Scientia Horticulturae, 2019, 252, 274-282.	3.6	34
15	Regulation of flowering by green light depends on its photon flux density and involves cryptochromes. Physiologia Plantarum, 2019, 166, 762-771.	5.2	12
16	Far-red radiation and photosynthetic photon flux density independently regulate seedling growth but interactively regulate flowering. Environmental and Experimental Botany, 2018, 155, 206-216.	4.2	43
17	Spectral effects of light-emitting diodes on plant growth, visual color quality, and photosynthetic photon efficacy: White versus blue plus red radiation. PLoS ONE, 2018, 13, e0202386.	2.5	49
18	Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environmental and Experimental Botany, 2017, 136, 41-49.	4.2	177

#	Article	IF	CITATIONS
19	Seedling Growth Is Similar under Supplemental Greenhouse Lighting from High-pressure Sodium Lamps or Light-emitting Diodes. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 388-394.	1.0	15
20	Spectral Effects of Supplemental Greenhouse Radiation on Growth and Flowering of Annual Bedding Plants and Vegetable Transplants. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 1221-1228.	1.0	19
21	Moderate-intensity blue radiation can regulate flowering, but not extension growth, of several photoperiodic ornamental crops. Environmental and Experimental Botany, 2017, 134, 12-20.	4.2	27
22	Proposed Product Label for Electric Lamps Used in the Plant Sciences. HortTechnology, 2017, 27, 544-549.	0.9	31
23	An intermediate phytochrome photoequilibria from night-interruption lighting optimally promotes flowering of several long-day plants. Environmental and Experimental Botany, 2016, 121, 132-138.	4.2	54
24	Control of Flowering Using Night-Interruption and Day-Extension LED Lighting. , 2016, , 191-201.		6
25	Recent Developments in Plant Lighting. , 2016, , 233-236.		1
26	Low-intensity blue light in night-interruption lighting does not influence flowering of herbaceous ornamentals. Scientia Horticulturae, 2015, 186, 230-238.	3.6	20
27	Photosynthetic changes in Cymbidium orchids grown under different intensities of night interruption lighting. Scientia Horticulturae, 2015, 186, 124-128.	3.6	13
28	Growth and Acclimation of Impatiens, Salvia, Petunia, and Tomato Seedlings to Blue and Red Light. Hortscience: A Publication of the American Society for Hortcultural Science, 2015, 50, 522-529.	1.0	58
29	Mean Daily Temperature Regulates Plant Quality Attributes of Annual Ornamental Plants. Hortscience: A Publication of the American Society for Hortcultural Science, 2014, 49, 574-580.	1.0	10
30	Growth of Impatiens, Petunia, Salvia, and Tomato Seedlings under Blue, Green, and Red Light-emitting Diodes. Hortscience: A Publication of the American Society for Hortcultural Science, 2014, 49, 734-740.	1.0	77
31	Comparing Flowering Responses of Long-day Plants under Incandescent and Two Commercial Light-emitting Diode Lamps. HortTechnology, 2014, 24, 490-495.	0.9	23
32	Controlling Flowering of Photoperiodic Ornamental Crops with Light-emitting Diode Lamps: A Coordinated Grower Trial. HortTechnology, 2014, 24, 702-711.	0.9	17
33	Developing flowering rate models in response to mean temperature for common annual ornamental crops. Scientia Horticulturae, 2013, 161, 15-23.	3.6	20
34	Manipulating Light Quality to Elicit Desirable Plant Growth and Flowering Responses. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 196-200.	0.4	4
35	Growth Responses of Ornamental Annual Seedlings Under Different Wavelengths of Red Light Provided by Light-emitting Diodes. Hortscience: A Publication of the American Society for Hortcultural Science, 2013, 48, 1478-1483.	1.0	20
36	A Moderate to High Red to Far-red Light Ratio from Light-emitting Diodes Controls Flowering of Short-day Plants. Journal of the American Society for Horticultural Science, 2013, 138, 167-172.	1.0	61

#	Article	IF	CITATIONS
37	Replacing incandescent lamps with compact fluorescent lamps may delay flowering. Scientia Horticulturae, 2012, 143, 56-61.	3.6	31
38	Quantifying the thermal flowering rates of eighteen species of annual bedding plants. Scientia Horticulturae, 2011, 128, 30-37.	3.6	28
39	Modeling plant morphology and development of petunia in response to temperature and photosynthetic daily light integral. Scientia Horticulturae, 2011, 129, 313-320.	3.6	27
40	Intermittent Light from a Rotating High-pressure Sodium Lamp Promotes Flowering of Long-day Plants. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 236-241.	1.0	40
41	Timing and Duration of Supplemental Lighting during the Seedling Stage Influence Quality and Flowering in Petunia and Pansy. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 1332-1337.	1.0	24
42	Use of a cyclic high-pressure sodium lamp to inhibit flowering of chrysanthemum and velvet sage. Scientia Horticulturae, 2009, 122, 448-454.	3.6	25
43	Photosynthetic Daily Light Integral Influences Flowering Time and Crop Characteristics of Cyclamen persicum. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 341-344.	1.0	43
44	Benzyladenine Promotes Flowering in Doritaenopsis and Phalaenopsis Orchids. Journal of Plant Growth Regulation, 2008, 27, 141-150.	5.1	49
45	Endogenous carbohydrate status affects postharvest ethylene sensitivity in relation to leaf senescence and adventitious root formation in Pelargonium cuttings. Postharvest Biology and Technology, 2008, 48, 272-282.	6.0	21
46	Low-temperature storage influences morphological and physiological characteristics of nonrooted cuttings of New Guinea impatiens (Impatiens hawkeri). Postharvest Biology and Technology, 2008, 50, 95-102.	6.0	8
47	Flowering of cyclamen is accelerated by an increase in temperature, photoperiod, and daily light integral. Journal of Horticultural Science and Biotechnology, 2008, 83, 559-562.	1.9	18
48	Photosynthetic Daily Light Integral during Propagation Influences Rooting and Growth of Cuttings and Subsequent Development of New Guinea Impatiens and Petunia. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 2052-2059.	1.0	47
49	Diurnal carbohydrate dynamics affect postharvest ethylene responsiveness in portulaca (Portulaca) Tj ETQq1 1 293-299.	0.784314 6.0	rgBT /Overlo 23
50	Effect of Time of Harvest on Postharvest Leaf Abscission in Lantana (Lantana camara L. †Dallas Red') Unrooted Cuttings. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 304-308.	1.0	9
51	Modeling the Effects of Temperature and Photosynthetic Daily Light Integral on Growth and Flowering of Salvia splendens and Tagetes patula. Journal of the American Society for Horticultural Science, 2007, 132, 283-288.	1.0	48
52	Temperature during the day, but not during the night, controls flowering of Phalaenopsis orchids. Journal of Experimental Botany, 2006, 57, 4043-4049.	4.8	75
53	Photosynthetic Daily Light Integral During the Seedling Stage Influences Subsequent Growth and Flowering of Celosia, Impatiens, Salvia, Tagetes, and Viola. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1336-1339.	1.0	28
54	Modeling Growth and Development of Celosia and Impatiens in Response to Temperature and Photosynthetic Daily Light Integral. Journal of the American Society for Horticultural Science, 2005, 130, 813-818.	1.0	29

#	Article	IF	CITATIONS
55	Photocontrol of Flowering and Extension Growth in the Long-day Plant Pansy. Journal of the American Society for Horticultural Science, 2003, 128, 479-485.	1.0	35
56	Stem extension and subsequent flowering of seedlings grown under a film creating a far-red deficient environment. Scientia Horticulturae, 2002, 96, 257-265.	3.6	25
57	Photocontrol of flowering and stem extension of the intermediate-day plant Echinacea purpurea. Physiologia Plantarum, 2001, 112, 433-441.	5.2	9
58	Specific Functions of Red, Far Red, and Blue Light in Flowering and Stem Extension of Long-day Plants. Journal of the American Society for Horticultural Science, 2001, 126, 275-282.	1.0	123
59	Cold treatment modifies the photoperiodic flowering response of Lobelia×speciosa. Scientia Horticulturae, 1999, 80, 247-258.	3.6	5
60	Photoperiod and Cold Treatment Regulate Flowering of Rudbeckia fulgida `Goldsturm'. Hortscience: A Publication of the American Society for Hortcultural Science, 1999, 34, 55-58.	1.0	18
61	Phytochrome A does not mediate reduced stem extension from cool day-temperature treatments. Physiologia Plantarum, 1998, 104, 596-602.	5.2	1
62	Flowering of Herbaceous Perennials under Various Night Interruption and Cyclic Lighting Treatments. Hortscience: A Publication of the American Society for Hortcultural Science, 1998, 33, 672-677.	1.0	43
63	Flowering of Leucanthemum ×superbum `Snowcap' in Response to Photoperiod and Cold Treatment. Hortscience: A Publication of the American Society for Hortcultural Science, 1998, 33, 1003-1006.	1.0	7
64	Flowering of Phlox paniculata Is Influenced by Photoperiod and Cold Treatment. Hortscience: A Publication of the American Society for Hortcultural Science, 1998, 33, 1172-1174.	1.0	11