
Ehud Yariv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7371316/publications.pdf Version: 2024-02-01

Εμπο Υναιν

#	Article	IF	CITATIONS
1	The Taylor–Melcher leaky dielectric model as a macroscale electrokinetic description. Journal of Fluid Mechanics, 2015, 773, 1-33.	3.4	89
2	"Force-free―electrophoresis?. Physics of Fluids, 2006, 18, 031702.	4.0	87
3	Force-driven transport through periodic entropy barriers. Europhysics Letters, 2007, 80, 50009.	2.0	81
4	Near-contact electrophoretic motion of a sphere parallel to a planar wall. Journal of Fluid Mechanics, 2003, 484, 85-111.	3.4	69
5	Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction. Physical Review E, 2012, 86, 021503.	2.1	68
6	The electrophoretic mobility of an eccentrically positioned spherical particle in a cylindrical pore. Physics of Fluids, 2002, 14, 3354-3357.	4.0	55
7	Weakly nonlinear electrophoresis of a highly charged colloidal particle. Physics of Fluids, 2013, 25, .	4.0	55
8	Nonlinear electrophoresis at arbitrary field strengths: small-Dukhin-number analysis. Physics of Fluids, 2014, 26, .	4.0	50
9	AN ASYMPTOTIC DERIVATION OF THE THIN-DEBYE-LAYER LIMIT FOR ELECTROKINETIC PHENOMENA. Chemical Engineering Communications, 2009, 197, 3-17.	2.6	47
10	Electrokinetic self-propulsion by inhomogeneous surface kinetics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 1645-1664.	2.1	44
11	Osmotic self-propulsion of slender particles. Physics of Fluids, 2015, 27, 031701.	4.0	44
12	Electrokinetic flows about conducting drops. Journal of Fluid Mechanics, 2013, 722, 394-423.	3.4	39
13	Streaming-potential phenomena in the thin-Debye-layer limit. Part 1. General theory. Journal of Fluid Mechanics, 2011, 685, 306-334.	3.4	36
14	Electro-convection about conducting particles. Journal of Fluid Mechanics, 2008, 595, 163-172.	3.4	35
15	Electro-osmotic flow near a surface charge discontinuity. Journal of Fluid Mechanics, 2004, 521, 181-189.	3.4	32
16	Electrophoresis of bubbles. Journal of Fluid Mechanics, 2014, 753, 49-79.	3.4	32
17	Electro-osmotic flows over highly polarizable dielectric surfaces. Physics of Fluids, 2010, 22, .	4.0	31
18	The Electrophoretic Mobility of a Closely Fitting Sphere in a Cylindrical Pore. SIAM Journal on Applied Mathematics, 2004, 64, 423-441.	1.8	30

#	Article	IF	CITATIONS
19	Strong-field electrophoresis. Journal of Fluid Mechanics, 2012, 701, 333-351.	3.4	30
20	Dielectric-solid polarization at strong fields: Breakdown of Smoluchowski's electrophoresis formula. Physics of Fluids, 2012, 24, .	4.0	28
21	Wall-induced self-diffusiophoresis of active isotropic colloids. Physical Review Fluids, 2016, 1, .	2.5	28
22	Asymptotic current-voltage relations for currents exceeding the diffusion limit. Physical Review E, 2009, 80, 051201.	2.1	27
23	Assessing corrections to the Fick–Jacobs equation. Journal of Chemical Physics, 2014, 141, 044118.	3.0	25
24	Flow animation by unsteady temperature fields. Physics of Fluids, 2004, 16, L95-L98.	4.0	24
25	Polymerase chain reaction in natural convection systems: A convection-diffusion-reaction model. Europhysics Letters, 2005, 71, 1008-1014.	2.0	24
26	Slender-body approximations for electro-phoresis and electro-rotation of polarizable particles. Journal of Fluid Mechanics, 2008, 613, 85-94.	3.4	23
27	Ratcheting of Brownian swimmers in periodically corrugated channels: A reduced Fokker-Planck approach. Physical Review E, 2014, 90, 032115.	2.1	23
28	Nonlinear electrophoresis of ideally polarizable particles. Europhysics Letters, 2008, 82, 54004.	2.0	22
29	Phoretic self-propulsion at large PécletÂnumbers. Journal of Fluid Mechanics, 2015, 768, .	3.4	22
30	Strong electro-osmotic flows about dielectric surfaces of zero surface charge. Physical Review E, 2014, 89, 043005.	2.1	21
31	Self-propulsion in a viscous fluid: arbitrary surface deformations. Journal of Fluid Mechanics, 2006, 550, 139.	3.4	18
32	Migration of ion-exchange particles driven by a uniform electric field. Journal of Fluid Mechanics, 2010, 655, 105-121.	3.4	17
33	Dielectrophoretic sphere–wall repulsion due to a uniform electric field. Soft Matter, 2016, 12, 6277-6284.	2.7	17
34	The effect of surface-charge convection on the settling velocity of spherical drops in a uniform electric field. Journal of Fluid Mechanics, 2016, 797, 536-548.	3.4	17
35	Nonlinear oscillations in an electrolyte solution under ac voltage. Physical Review E, 2014, 89, 032302.	2.1	16
36	The Diffusion-Control Limit Revisited. Physical Review Letters, 2002, 89, 266107.	7.8	15

#	Article	IF	CITATIONS
37	Electro-hydrodynamic particle levitation on electrodes. Journal of Fluid Mechanics, 2010, 645, 187-210.	3.4	15
38	Streaming-potential phenomena in the thin-Debye-layer limit. Part 2. Moderate Péclet numbers. Journal of Fluid Mechanics, 2012, 704, 109-136.	3.4	15
39	Electrohydrodynamic rotation of drops at large electric Reynolds numbers. Journal of Fluid Mechanics, 2016, 788, .	3.4	13
40	lsotropically active colloids under uniform force fields: from forced to spontaneous motion. Journal of Fluid Mechanics, 2021, 916, .	3.4	13
41	Curvature-Induced Dispersion in Electro-Osmotic Serpentine Flows. SIAM Journal on Applied Mathematics, 2004, 64, 1099-1124.	1.8	12
42	Longitudinal pressure-driven flows between superhydrophobic grooved surfaces: Large effective slip in the narrow-channel limit. Physical Review Fluids, 2017, 2, .	2.5	11
43	Electric conductance of highly selective nanochannels. Physical Review E, 2013, 87, 054301.	2.1	10
44	Two-dimensional phoretic swimmers: theÂsingular weak-advection limits. Journal of Fluid Mechanics, 2017, 816, .	3.4	10
45	Self-Diffusiophoresis of Slender Catalytic Colloids. Langmuir, 2020, 36, 6903-6915.	3.5	10
46	Induced-charge electrokinetic flows about polarizable nano-particles: the thick-Debye-layer limit. Journal of Fluid Mechanics, 2009, 627, 341-360.	3.4	9
47	Streaming-potential phenomena in the thin-Debye-layer limit. PartÂ3. Shear-induced electroviscous repulsion. Journal of Fluid Mechanics, 2016, 786, 84-109.	3.4	9
48	Inertia-induced electrophoretic interactions. Physics of Fluids, 2004, 16, L24-L27.	4.0	8
49	Ionic Currents in the Presence of Supporting Electrolytes. Physical Review Letters, 2010, 105, 176101.	7.8	8
50	Electrohydrodynamic Drop Deformation by Strong Electric Fields: Slender-Body Analysis. SIAM Journal on Applied Mathematics, 2013, 73, 2143-2161.	1.8	8
51	Boundary-induced autophoresis of isotropic colloids: anomalous repulsion in the lubrication limit. Journal of Fluid Mechanics, 2017, 812, 26-40.	3.4	8
52	Small-solid-fraction approximations for the slip-length tensor of micropillared superhydrophobic surfaces. Journal of Fluid Mechanics, 2018, 843, 637-652.	3.4	8
53	Longitudinal Thermocapillary Flow over a Dense Bubble Mattress. SIAM Journal on Applied Mathematics, 2020, 80, 1-19.	1.8	8
54	Phoretic drag reduction of chemically active homogeneous spheres under force fields and shear flows. Physical Review Fluids, 2017, 2, .	2.5	8

#	Article	IF	CITATIONS
55	Thermophoresis Due to Strong Temperature Gradients. SIAM Journal on Applied Mathematics, 2008, 69, 453-472.	1.8	7
56	Shear-induced Electrokinetic Lift at Large Péclet Numbers. Mathematical Modelling of Natural Phenomena, 2012, 7, 64-81.	2.4	7
57	The electrophoretic mobility of rod-like particles. Journal of Fluid Mechanics, 2013, 719, .	3.4	7
58	Velocity amplification in pressure-driven flows between superhydrophobic gratings of small solid fraction. Soft Matter, 2017, 13, 6287-6292.	2.7	7
59	Thermocapillary flow between longitudinally grooved superhydrophobic surfaces. Journal of Fluid Mechanics, 2018, 855, 574-594.	3.4	7
60	Thermocapillary flow between grooved superhydrophobic surfaces: transverse temperature gradients. Journal of Fluid Mechanics, 2019, 871, 775-798.	3.4	7
61	Acoustics of bubbles trapped in microgrooves: From isolated subwavelength resonators to superhydrophobic metasurfaces. Physical Review B, 2019, 99, .	3.2	7
62	Stokes resistance of a cylinder near a slippery wall. Physical Review Fluids, 2017, 2, .	2.5	7
63	Boundary-induced electrophoresis of uncharged conducting particles: near-contact approximation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465, 1939-1948.	2.1	6
64	Boundary effects on electro-magneto-phoresis. Journal of Fluid Mechanics, 2009, 622, 195-207.	3.4	6
65	Electrokinetic particle-electrode interactions at high frequencies. Physical Review E, 2013, 87, 012310.	2.1	6
66	Application of Schwarz–Christoffel mapping to the analysis of conduction through a slot. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150292.	2.1	6
67	Pressure-driven plug flows between superhydrophobic surfaces of closely spaced circular bubbles. Journal of Engineering Mathematics, 2018, 111, 15-22.	1.2	6
68	Rotation of a superhydrophobic cylinder in a viscous liquid. Journal of Fluid Mechanics, 2019, 880, .	3.4	6
69	Stokes resistance of a solid cylinder near a superhydrophobic surface. Part 1. Grooves perpendicular to cylinder axis. Journal of Fluid Mechanics, 2019, 868, 212-243.	3.4	6
70	Edge corrections for parallel-plate capacitors. European Journal of Applied Mathematics, 2021, 32, 226-241.	2.9	6
71	Electro-magneto-phoresis of slender bodies. Journal of Fluid Mechanics, 2007, 577, 331-340.	3.4	5
72	The elongated shape of a dielectric drop deformed by a strong electric field. Journal of Fluid Mechanics, 2010, 664, 286-296.	3.4	5

#	Article	IF	CITATIONS
73	Irreversible Electrokinetic Repulsion at Zero-Reynolds-Number Sedimentation. Physical Review Letters, 2011, 107, 278301.	7.8	5
74	Rolling of non-wetting droplets down a gently inclined plane. Journal of Fluid Mechanics, 2020, 903, .	3.4	5
75	Longitudinal thermocapillary slip about a dilute periodic mattress of protruding bubbles. IMA Journal of Applied Mathematics, 2021, 86, 490-501.	1.6	5
76	Speed of rolling droplets. Physical Review Fluids, 2019, 4, .	2.5	5
77	Phoretic self-propulsion of Janus disks in the fast-reaction limit. Physical Review Fluids, 2020, 5, .	2.5	5
78	Effects of solute mass transfer on the stability of capillary jets. Journal of Fluid Mechanics, 2003, 474, 95-115.	3.4	4
79	Communication: The phoretic drift of a charged particle animated by a direct ionic current. Journal of Chemical Physics, 2010, 133, 121102.	3.0	4
80	Improved Current-Voltage Approximations for Currents Exceeding the Diffusion Limit. SIAM Journal on Applied Mathematics, 2011, 71, 2131-2150.	1.8	3
81	The electrophoretic mobilities of a circular cylinder in close proximity to a dielectric wall. Journal of Fluid Mechanics, 2016, 804, .	3.4	3
82	Resistive-force theory for mesh-like superhydrophobic surfaces. Physical Review Fluids, 2018, 3, .	2.5	3
83	Self-diffusiophoresis of Janus particles at large Damköhler numbers. Journal of Engineering Mathematics, 2022, 133, 1.	1.2	3
84	Phoretic self-propulsion of a slightly inhomogeneous disc. Journal of Fluid Mechanics, 2022, 940, .	3.4	3
85	Slip-driven thermal rectification. Europhysics Letters, 2007, 79, 24001.	2.0	2
86	Comment on "On the flow field about an electrophoretic particle―[Phys. Fluids 24, 102001 (2012)]. Physics of Fluids, 2013, 25, 049102.	4.0	2
87	Deformation of leaky-dielectric fluid globules under strong electric fields: boundary layers and jets at large Reynolds numbers. Journal of Fluid Mechanics, 2013, 734, .	3.4	2
88	Wetting transitions and apparent contact angles on smoothly textured surfaces. Physical Review E, 2018, 98, .	2.1	2
89	Transient diffusion from high-capacity solute beacons. Applied Mathematics Letters, 2020, 103, 106182.	2.7	2
90	Anomalous sedimentation of a small Brownian sphere in a vertical circular cylinder of periodically varying radius. Physics of Fluids, 2003, 15, 1082-1085.	4.0	1

#	Article	IF	CITATIONS
91	Displacing small particles by unsteady temperature fields. Journal of Fluid Mechanics, 2005, 530, 125-134.	3.4	1
92	HOWARD BRENNER'S LEGACY…SO FAR. Chemical Engineering Communications, 2009, 197, 1-2.	2.6	1
93	One-dimensional conduction through supporting electrolytes: Two-scale cathodic Debye layer. Physical Review E, 2011, 84, 041204.	2.1	1
94	Small Péclet-number mass transport to a finite strip: An advection–diffusion–reaction model of surface-based biosensors. European Journal of Applied Mathematics, 2020, 31, 763-781.	2.9	1
95	Conductivity of a medium containing a dense array of perfectly conducting square cylinders. Journal of Engineering Mathematics, 2021, 127, 1.	1.2	0