List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7369985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human T Cells That Are Able to Produce IL-17 Express the Chemokine Receptor CCR6. Journal of Immunology, 2008, 180, 214-221.	0.8	354
2	On the Mechanism and Significance of Ligand-induced Internalization of Human Neutrophil Chemokine Receptors CXCR1 and CXCR2. Journal of Biological Chemistry, 2004, 279, 24372-24386.	3.4	119
3	Distinct Mechanisms of Agonist-induced Endocytosis for Human Chemokine Receptors CCR5 and CXCR4. Molecular Biology of the Cell, 2003, 14, 3305-3324.	2.1	98
4	The α, but Not the β, Isoform of the Human Thromboxane A2 Receptor Is a Target for Prostacyclin-mediated Desensitization. Journal of Biological Chemistry, 2000, 275, 20412-20423.	3.4	96
5	Oxidized Lipid-Driven Chemokine Receptor Switch, CCR2 to CX3CR1, Mediates Adhesion of Human Macrophages to Coronary Artery Smooth Muscle Cells Through a Peroxisome Proliferator-Activated Receptor γ–Dependent Pathway. Circulation, 2006, 114, 807-819.	1.6	95
6	Characterization of subsets of CD4+ memory T cells reveals early branched pathways of T cell differentiation in humans. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7916-7921.	7.1	91
7	Human B Cells Become Highly Responsive to Macrophage-Inflammatory Protein-3α/CC Chemokine Ligand-20 After Cellular Activation Without Changes in CCR6 Expression or Ligand Binding. Journal of Immunology, 2002, 168, 4871-4880.	0.8	89
8	Roles for CXC Chemokine Ligands 10 and 11 in Recruiting CD4+ T Cells to HIV-1-Infected Monocyte-Derived Macrophages, Dendritic Cells, and Lymph Nodes. Journal of Immunology, 2005, 174, 4892-4900.	0.8	75
9	receptor11Abbreviations: cAMP, cyclic adenosine 5â€ ² monophosphate; [Ca2+]i, intracellular calcium; DP, PGD2 receptor; HA, hemagluttinin; HEK, human embryonic kidney; HEL, human erythroleukaemia; HBS, HEPES-buffered saline; IP, prostacyclin receptor; IP3, inositol 1,4,5 trisphosphate; PG, prostaglandin; PKA, protein kinase A: PKC, protein kinase C: RT–PCR, reverse transcriptase–polymerase chain reaction:	4.4	30
10	TXA2, thro. Biochemical Pharmacology, 2001, 62, 229-239. Differentiation of Human T Cells Alters Their Repertoire of G Protein α-Subunits. Journal of Biological Chemistry, 2010, 285, 35537-35550.	3.4	17
11	Cholesterol is obligatory for polarization and chemotaxis but not for endocytosis and associated signaling from chemoattractant receptors in human neutrophils. Journal of Biomedical Science, 2008, 15, 441-461.	7.0	13
12	Selectivity in the Use of G _{i/o} Proteins Is Determined by the DRF Motif in CXCR6 and Is Cell-Type Specific. Molecular Pharmacology, 2015, 88, 894-910.	2.3	9
13	Polyfunctional T Cells. Science Signaling, 2012, 5, .	3.6	9
14	Focus Issue: Inflammatory mechanisms. Science Signaling, 2015, 8, eg2.	3.6	8
15	Changes in histone acetylation and methylation that are important for persistent but not transient expression of <i>CCR4</i> in human CD4 ⁺ T cells. European Journal of Immunology, 2010, 40, 3183-3197.	2.9	7
16	Focus Issue: Systems Analysis of Protein Phosphorylation. Science Signaling, 2010, 3, eg6.	3.6	7
17	Focus Issue: Understanding Mechanisms of Inflammation. Science Signaling, 2013, 6, eg2.	3.6	5
18	Focus Issue: Unraveling Signaling Complexity. Science Signaling, 2009, 2, eg10.	3.6	4

#	Article	IF	CITATIONS
19	An Insider's View. Science, 2007, 318, 61-61.	12.6	2
20	Focus Issue: Mechanisms of Gene Regulation. Science Signaling, 2008, 1, eg3.	3.6	2
21	Ceramide Keeps Mast Cells in Check. Science Signaling, 2012, 5, .	3.6	2
22	NEK7 activates NLRP3. Science Signaling, 2016, 9, .	3.6	2
23	Keeping cGAS under control. Science Signaling, 2016, 9, .	3.6	2
24	Serine ubiquitylation. Science Signaling, 2016, 9, .	3.6	2
25	Plant chemokine mimics. Science Signaling, 2020, 13, .	3.6	2
26	Obesity and antitumor immunity. Science Signaling, 2022, 15, eabq0080.	3.6	2
27	Focus Issue: Adding Math to the Signaling Toolkit. Science Signaling, 2012, 5, eg5.	3.6	1
28	Aging and autoimmunity. Science Signaling, 2021, 14, .	3.6	1
29	Distinct nutrient use in tumors. Science Signaling, 2021, 14, .	3.6	1
30	Enhancing tumor infiltration. Science Signaling, 2021, 14, .	3.6	1
31	A Role for SIRT6 in Secretion. Science Signaling, 2013, 6, .	3.6	1
32	Heparanase Promotes Exosome Release. Science Signaling, 2013, 6, .	3.6	1
33	The Inflammasome and Transplantation. Science Signaling, 2013, 6, .	3.6	1
34	EGFR and IL-6R Cooperate. Science Signaling, 2013, 6, .	3.6	1
35	Detecting a Pathogenic Activity, Not a Pathogenic Molecule. Science Signaling, 2014, 7, .	3.6	1
36	The Toll of Stress on Vessels. Science Signaling, 2010, 3, .	3.6	1

#	Article	IF	CITATIONS
37	T Cell Activation and High Blood Pressure. Science Signaling, 2014, 7, .	3.6	1
38	TRAF6 phosphorylation inhibits inflammation. Science Signaling, 2015, 8, .	3.6	1
39	A transcription factor Sox it to bacterial DNA. Science Signaling, 2015, 8, .	3.6	1
40	More roles for mitochondria in the immune response. Science Signaling, 2016, 9, .	3.6	1
41	New connections: TGF- \hat{I}^2 in tumors. Science Signaling, 2018, 11, .	3.6	1
42	New connections: Reprogramming B cell metabolism. Science Signaling, 2018, 11, .	3.6	1
43	Glucocorticoids and PD-1. Science Signaling, 2018, 11, .	3.6	1
44	New connections: Taking advantage of bias. Science Signaling, 2018, 11, .	3.6	1
45	PAF and the inflammasome. Science Signaling, 2019, 12, .	3.6	1
46	Blocking tau propagation. Science Signaling, 2020, 13, .	3.6	1
47	STING and arthritis. Science Signaling, 2021, 14, eabn7607.	3.6	1
48	Focus Issue: External and Internal Regulators of Immune Responses. Science Signaling, 2010, 3, eg2.	3.6	0
49	Focus Issue: Regulation of Lymphocyte Function. Science Signaling, 2012, 5, eg8.	3.6	0
50	A TRAIL from gut to brain. Science Signaling, 2021, 14, .	3.6	0
51	Sensing mitochondrial damage. Science Signaling, 2021, 14, .	3.6	0
52	Lymph nodes lose their nerve. Science Signaling, 2021, 14, .	3.6	0
53	Intercellular cross-talk curbs Alzheimer's disease. Science Signaling, 2021, 14, .	3.6	0
54	In Science Journals. Science, 2021, 373, 1100-1102.	12.6	0

#	Article	IF	CITATIONS
55	Insulin and T _{reg} cells. Science Signaling, 2021, 14, eabm2485.	3.6	0
56	In Science Journals. Science, 2021, 374, 44-46.	12.6	0
57	Reprogramming CD8 ⁺ T cells. Science Signaling, 2021, 14, .	3.6	0
58	Permanently biased toward arrestins. Science Signaling, 2021, 14, eabm7320.	3.6	0
59	Interfacing with a receptor. Science Signaling, 2021, 14, eabn2358.	3.6	0
60	In Science Journals. Science, 2022, 375, 278-280.	12.6	0
61	Channeling cGAMP. Science Signaling, 2022, 15, eabo4600.	3.6	0
62	In Science Journals. Science, 2021, 374, 1572-1574.	12.6	0
63	In Science Journals. Science, 2022, 375, 1140-1142.	12.6	0
64	In Science Journals. Science, 2022, 376, 258-260.	12.6	0
65	Shining a light on rhodopsin signaling. Science Signaling, 2022, 15, eabq5583.	3.6	0
66	In Science Journals. Science, 2022, 376, 591-593.	12.6	0