Ivan Cuccovillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7369522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	D-mannose suppresses macrophage IL- $1^{\hat{1}^2}$ production. Nature Communications, 2020, 11, 6343.	12.8	118
2	Laboratory-Scale Lentiviral Vector Production and Purification for Enhanced ExÂVivo and InÂVivo Genetic Engineering. Molecular Therapy - Methods and Clinical Development, 2020, 19, 411-425.	4.1	21
3	Assessing the Impact of Cyclosporin A on Lentiviral Transduction and Preservation of Human Hematopoietic Stem Cells in Clinically RelevantEx VivoGene Therapy Settings. Human Gene Therapy, 2019, 30, 1133-1146.	2.7	8
4	Cyclosporine H Overcomes Innate Immune Restrictions to Improve Lentiviral Transduction and Gene Editing In Human Hematopoietic Stem Cells. Cell Stem Cell, 2018, 23, 820-832.e9.	11.1	86
5	Lentiviral vectors escape innate sensing but trigger p53 in human hematopoietic stem and progenitor cells. EMBO Molecular Medicine, 2017, 9, 1198-1211.	6.9	56
6	Pentraxin 3 plasma levels at graft-versus-host disease onset predict disease severity and response to therapy in children given haematopoietic stem cell transplantation. Oncotarget, 2016, 7, 82123-82138.	1.8	6
7	Pentraxin 3 (PTX3) plasma levels and carotid intima media thickness progression in the general population. Nutrition, Metabolism and Cardiovascular Diseases, 2014, 24, 518-523.	2.6	31
8	Pentraxin-3 Predicts Functional Recovery and 1-Year Major Adverse Cardiovascular Events After Rehabilitation of Cardiac Surgery Patients. Journal of Cardiopulmonary Rehabilitation and Prevention, 2012, 32, 17-24.	2.1	16
9	Pentraxinâ€3 in chronic heart failure: the CORONA and GISSIâ€HF trials. European Journal of Heart Failure, 2012, 14, 992-999.	7.1	91
10	Pentraxin-3 as a Marker of Advanced Atherosclerosis Results from the Bruneck, ARMY and ARFY Studies. PLoS ONE, 2012, 7, e31474.	2.5	63
11	Selective upâ€regulation of the soluble patternâ€recognition receptor pentraxin 3 and of vascular endothelial growth factor in giant cell arteritis: Relevance for recent optic nerve ischemia. Arthritis and Rheumatism, 2012, 64, 854-865.	6.7	89
12	Plasma pentraxin-3 as a marker of bioincompatibility in hemodialysis patients. Journal of Nephrology, 2012, 25, 120-126.	2.0	19
13	Plasma levels of pentraxin-3, an acute phase protein, are increased during sickle cell painful crisis. Blood Cells, Molecules, and Diseases, 2011, 46, 189-194.	1.4	18
14	A mouse model for spatial and temporal expression of HGF in the heart. Transgenic Research, 2011, 20, 1203-1216.	2.4	8
15	Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: different role of C-reactive protein and pentraxin 3. Haematologica, 2011, 96, 315-318.	3.5	160
16	Persisting high levels of plasma pentraxin 3 over the first days after severe sepsis and septic shock onset are associated with mortality. Intensive Care Medicine, 2010, 36, 621-629.	8.2	137
17	Increased levels of serum pentraxin 3, a novel cardiovascular biomarker, in patients with inflammatory rheumatic disease. Arthritis Care and Research, 2010, 62, 378-385.	3.4	69
18	Regulation of leukocyte recruitment by the long pentraxin PTX3. Nature Immunology, 2010, 11, 328-334.	14.5	396

IVAN CUCCOVILLO

#	Article	IF	CITATIONS
19	Predicting atrial fibrillation recurrence with circulating inflammatory markers in patients in sinus rhythm at high risk for atrial fibrillation: data from the CISSI atrial fibrillation trial. Heart, 2010, 96, 1909-1914.	2.9	31
20	Human cardiac mesoangioblasts isolated from hypertrophic cardiomyopathies are greatly reduced in proliferation and differentiation potency. Cardiovascular Research, 2009, 83, 707-716.	3.8	46
21	Cardiac mesoangioblasts are committed, self-renewable progenitors, associated with small vessels of juvenile mouse ventricle. Cell Death and Differentiation, 2008, 15, 1417-1428.	11.2	94
22	Effect of β-adrenergic and renin–angiotensin system blockade on myocyte apoptosis and oxidative stress in diabetic hypertensive rats. Life Sciences, 2007, 81, 951-959.	4.3	22
23	Cardiovascular oxidative stress is reduced by an ACE inhibitor in a rat model of streptozotocin-induced diabetes. Life Sciences, 2006, 79, 121-129.	4.3	96
24	A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2046-2051.	7.1	231
25	Antioxidant treatment attenuates hyperglycemia-induced cardiomyocyte death in rats. Journal of Molecular and Cellular Cardiology, 2004, 37, 959-968.	1.9	182