List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7369088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Membrane bioreactors for wastewater treatment: A review of mechanical cleaning by scouring agents to control membrane fouling. Chemical Engineering Journal, 2017, 307, 897-913.	12.7	254
2	Photocatalytic systems as an advanced environmental remediation: Recent developments, limitations and new avenues for applications. Journal of Environmental Chemical Engineering, 2016, 4, 4143-4164.	6.7	211
3	Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations. Bioresource Technology, 2019, 283, 358-372.	9.6	183
4	Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles. International Journal of Hydrogen Energy, 2019, 44, 13106-13113.	7.1	159
5	Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Science of the Total Environment, 2021, 765, 144429.	8.0	159
6	Microalgae-based biofuels, resource recovery and wastewater treatment: A pathway towards sustainable biorefinery. Fuel, 2019, 255, 115826.	6.4	144
7	A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Bioresource Technology, 2021, 325, 124685.	9.6	138
8	Recent developments in biofouling control in membrane bioreactors for domestic wastewater treatment. Separation and Purification Technology, 2018, 206, 297-315.	7.9	134
9	Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects. Renewable and Sustainable Energy Reviews, 2021, 136, 110375.	16.4	134
10	An overview on advancements in biobased transesterification methods for biodiesel production: Oil resources, extraction, biocatalysts, and process intensification technologies. Fuel, 2021, 285, 119117.	6.4	121
11	The effect of fluidized media characteristics on membrane fouling and energy consumption in anaerobic fluidized membrane bioreactors. Separation and Purification Technology, 2014, 132, 10-15.	7.9	110
12	Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment. Bioresource Technology, 2017, 240, 33-41.	9.6	107
13	Anaerobic membrane bioreactor towards biowaste biorefinery and chemical energy harvest: Recent progress, membrane fouling and future perspectives. Renewable and Sustainable Energy Reviews, 2019, 115, 109392.	16.4	103
14	A state of the art review on biomass processing and conversion technologies to produce hydrogen and its recovery via membrane separation. International Journal of Hydrogen Energy, 2020, 45, 15166-15195.	7.1	102
15	A brief review of anaerobic membrane bioreactors emphasizing recent advancements, fouling issues and future perspectives. Journal of Environmental Management, 2020, 270, 110909.	7.8	101
16	Anaerobic membrane bioreactors for biohydrogen production: Recent developments, challenges and perspectives. Bioresource Technology, 2018, 269, 452-464.	9.6	100
17	Valorization of spent coffee grounds into biofuels and value-added products: Pathway towards integrated bio-refinery. Fuel, 2019, 254, 115640.	6.4	100
18	Integrated valorization of waste cooking oil and spent coffee grounds for biodiesel production: Blending with higher alcohols, FT–IR, TGA, DSC and NMR characterizations. Fuel, 2019, 244, 419-430.	6.4	97

#	Article	IF	CITATIONS
19	Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects. Renewable and Sustainable Energy Reviews, 2019, 105, 427-443.	16.4	94
20	Biodiesel production by valorizing waste Phoenix dactylifera L. Kernel oil in the presence of synthesized heterogeneous metallic oxide catalyst (Mn@MgO-ZrO 2). Energy Conversion and Management, 2018, 155, 128-137.	9.2	90
21	Energy saving anammox technology-based nitrogen removal and bioenergy recovery from wastewater: Inhibition mechanisms, state-of-the-art control strategies, and prospects. Renewable and Sustainable Energy Reviews, 2021, 135, 110126.	16.4	89
22	Novel staged anaerobic fluidized bed ceramic membrane bioreactor: Energy reduction, fouling control and microbial characterization. Journal of Membrane Science, 2018, 553, 200-208.	8.2	84
23	Recent developments on sewage sludge pyrolysis and its kinetics: Resources recovery, thermogravimetric platforms, and innovative prospects. Computers and Chemical Engineering, 2021, 150, 107325.	3.8	74
24	Biofouling of membranes in microbial electrochemical technologies: Causes, characterization methods and mitigation strategies. Bioresource Technology, 2019, 279, 327-338.	9.6	71
25	Biofuels and biorefineries: Development, application and future perspectives emphasizing the environmental and economic aspects. Journal of Environmental Management, 2021, 297, 113268.	7.8	66
26	Valorization of underutilized waste biomass from invasive species to produce biochar for energy and other value-added applications. Environmental Research, 2020, 186, 109596.	7.5	60
27	Fuels properties, characterizations and engine and emission performance analyses of ternary waste cooking oil biodiesel–diesel–propanol blends. Sustainable Energy Technologies and Assessments, 2019, 35, 321-334.	2.7	56
28	A critical review on limitations and enhancement strategies associated with biohydrogen production. International Journal of Hydrogen Energy, 2021, 46, 16565-16590.	7.1	55
29	Emergent green technologies for cost-effective valorization of microalgal biomass to renewable fuel products under a biorefinery scheme. Chemical Engineering Journal, 2021, 415, 128932.	12.7	55
30	SO3H functionalized UiO-66 nanocrystals in Polysulfone based mixed matrix membranes: Synthesis and application for efficient CO2 capture. Separation and Purification Technology, 2019, 224, 524-533.	7.9	54
31	Valorization of solid waste biomass by inoculation for the enhanced yield of biogas. Clean Technologies and Environmental Policy, 2020, 22, 513-522.	4.1	54
32	A review on valorization of spent coffee grounds (SCG) towards biopolymers and biocatalysts production. Bioresource Technology, 2020, 314, 123800.	9.6	54
33	Valorization of spent coffee grounds recycling as a potential alternative fuel resource in Turkey: An experimental study. Journal of the Air and Waste Management Association, 2018, 68, 196-214.	1.9	53
34	Microalgae: A prospective low cost green alternative for nanoparticle synthesis. Current Opinion in Environmental Science and Health, 2021, 20, 100163.	4.1	52
35	A modelling approach to study the fouling of an anaerobic membrane bioreactor for industrial wastewater treatment. Bioresource Technology, 2017, 245, 207-215.	9.6	51
36	Submerged low-cost pyrophyllite ceramic membrane filtration combined with GAC as fluidized particles for industrial wastewater treatment. Chemosphere, 2018, 206, 784-792.	8.2	51

#	Article	IF	CITATIONS
37	Biogas to liquefied biomethane: Assessment of 3P's–Production, processing, and prospects. Renewable and Sustainable Energy Reviews, 2020, 119, 109561.	16.4	51
38	Greener and sustainable production of bioethylene from bioethanol: current status, opportunities and perspectives. Reviews in Chemical Engineering, 2022, 38, 185-207.	4.4	49
39	Particle-sparged anaerobic membrane bioreactor with fluidized polyethylene terephthalate beads for domestic wastewater treatment: Modelling approach and fouling control. Bioresource Technology, 2018, 258, 263-269.	9.6	46
40	Integrated valorization of Moringa oleifera and waste Phoenix dactylifera L. dates as potential feedstocks for biofuels production from Algerian Sahara: An experimental perspective. Biocatalysis and Agricultural Biotechnology, 2019, 20, 101234.	3.1	46
41	Facile CO ₂ Separation in Composite Membranes. Chemical Engineering and Technology, 2019, 42, 30-44.	1.5	45
42	Analysis of membrane fouling with porous membrane filters by microbial suspensions for autotrophic nitrogen transformations. Separation and Purification Technology, 2015, 146, 284-293.	7.9	44
43	Macroscopic approach to develop fouling model under GAC fluidization in anaerobic fluidized bed membrane bioreactor. Journal of Industrial and Engineering Chemistry, 2017, 49, 219-229.	5.8	44
44	Performance evaluation of microbial electrochemical systems operated with Nafion and supported ionic liquid membranes. Chemosphere, 2017, 175, 350-355.	8.2	40
45	A state-of-the-art review on spent coffee ground (SCG) pyrolysis for future biorefinery. Chemosphere, 2022, 286, 131730.	8.2	39
46	NO and SO2 emissions in palm kernel shell catalytic steam gasification with in-situ CO2 adsorption for hydrogen production in a pilot-scale fluidized bed gasification system. Journal of Cleaner Production, 2019, 236, 117636.	9.3	38
47	Trends and progress in AnMBR for domestic wastewater treatment and their impacts on process efficiency and membrane fouling. Environmental Technology and Innovation, 2021, 21, 101204.	6.1	35
48	Metatranscriptomic evidence for classical and RuBisCO-mediated CO2 reduction to methane facilitated by direct interspecies electron transfer in a methanogenic system. Scientific Reports, 2019, 9, 4116.	3.3	30
49	Investigating membrane fouling associated with GAC fluidization on membrane with effluent from anaerobic fluidized bed bioreactor in domestic wastewater treatment. Environmental Science and Pollution Research, 2019, 26, 1170-1180.	5.3	29
50	Cleaner fuel production from waste Phoenix dactylifera L. kernel oil in the presence of a bimetallic catalyst: Optimization and kinetics study. Energy Conversion and Management, 2017, 146, 195-204.	9.2	25
51	Modelling approach to better control biofouling in fluidized bed membrane bioreactor for wastewater treatment. Chemosphere, 2018, 191, 136-144.	8.2	25
52	CO2 separation by supported liquid membranes synthesized with natural deep eutectic solvents. Environmental Science and Pollution Research, 2021, 28, 33994-34008.	5.3	25
53	Two-way switch: Maximizing productivity of tilted panel in membrane bioreactor. Journal of Environmental Management, 2018, 228, 529-537.	7.8	24
54	Bioreactors, gas delivery systems and supporting technologies for microbial synthesis gas conversion process. Bioresource Technology Reports, 2019, 7, 100207.	2.7	23

#	Article	IF	CITATIONS
55	Perspective of safflower (<i>Carthamus tinctorius</i>) as a potential biodiesel feedstock in Turkey: characterization, engine performance and emissions analyses of butanol–biodiesel–diesel blends. Biofuels, 2020, 11, 715-731.	2.4	23
56	Integrated adsorption steam gasification for enhanced hydrogen production from palm waste at bench scale plant. International Journal of Hydrogen Energy, 2021, 46, 30581-30591.	7.1	23
57	Flowsheet Modeling and Simulation of Biomass Steam Gasification for Hydrogen Production. Chemical Engineering and Technology, 2020, 43, 649-660.	1.5	21
58	Carbon molecular sieve production from defatted spent coffee ground using ZnCl2 and benzene for gas purification. Fuel, 2020, 277, 118183.	6.4	20
59	Membrane scouring to control fouling under fluidization of non-adsorbing media for wastewater treatment. Environmental Science and Pollution Research, 2019, 26, 1061-1071.	5.3	19
60	Trends in Biological Nutrient Removal for the Treatment of Low Strength Organic Wastewaters. Current Pollution Reports, 2021, 7, 1-30.	6.6	17
61	Spent coffee grounds based circular bioeconomy: Technoeconomic and commercialization aspects. Renewable and Sustainable Energy Reviews, 2021, 152, 111721.	16.4	17
62	Valorization of waste "date seeds―bio-glycerol for synthesizing oxidative green fuel additive. Journal of Cleaner Production, 2017, 165, 1090-1096.	9.3	16
63	Simultaneous production of bioelectricity and biogas from chicken droppings and dairy industry wastewater employing bioelectrochemical system. Fuel, 2019, 256, 115902.	6.4	16
64	Hydrocarbons fuel upgradation in the presence of modified bi-functional catalyst. Journal of Cleaner Production, 2018, 198, 683-692.	9.3	15
65	Rheological improvement in performance of lowâ€rank coal–water slurries using novel costâ€effective additives. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2400.	1.5	15
66	Mixed matrix membranes incorporated with sonication-assisted ZIF-8 nanofillers for hazardous wastewater treatment. Environmental Science and Pollution Research, 2019, 26, 35913-35923.	5.3	14
67	Synergistic solution of CO ₂ capture by novel lanthanide-based MOF-76 yttrium nanocrystals in mixed-matrix membranes. Energy and Environment, 2020, 31, 692-712.	4.6	14
68	Wind speed pattern data and wind energy potential in Pakistan: current status, challenging platforms and innovative prospects. Environmental Science and Pollution Research, 2021, 28, 34051-34073.	5.3	13
69	A forecasting model approach of sustainable electricity management by developing adaptive neuro-fuzzy inference system. Environmental Science and Pollution Research, 2020, 27, 17607-17618.	5.3	9
70	Wastewater based microalgae valorization for biofuel and value-added products recovery. Sustainable Energy Technologies and Assessments, 2022, 53, 102443.	2.7	7
71	CO2 from waste to resource by developing novel mixed matrix membranes. Environmental Science and Pollution Research, 2021, 28, 12397-12405.	5.3	6
72	Kinematic Measurements of Novel Chaotic Micromixers to Enhance Mixing Performances at Low Reynolds Numbers: Comparative Study. Micromachines, 2021, 12, 364.	2.9	6

#	Article	IF	CITATIONS
73	Hazardous wastewater treatment by low ost sorbent with in situ regeneration using hybrid solar energyâ€electrochemical system. Water Environment Research, 2021, 93, 1554-1561.	2.7	5
74	Enhancement of Mixing Performance of Two-Layer Crossing Micromixer through Surrogate-Based Optimization. Micromachines, 2021, 12, 211.	2.9	4
75	Metal organic frameworks-based mixed matrix membranes for gas separation. , 2020, , 273-292.		3
76	Performance Enhancement of the Micromixer by the Multiobjective Genetic Algorithm and Surrogate Model Based on a Navier–Stokes Analysis Using Trade-Off Objective Functions. Mathematical Problems in Engineering, 2021, 2021, 1-10.	1.1	1
77	Alumina Membrane Bioreactor. , 2020, , 115-139.		0