
Jerrold M Olefsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7368413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inflammation in obesity, diabetes, and related disorders. Immunity, 2022, 55, 31-55.	14.3	489
2	Extracellular Vesicles and Their Emerging Roles as Cellular Messengers in Endocrinology: An Endocrine Society Scientific Statement. Endocrine Reviews, 2022, 43, 441-468.	20.1	40
3	Cancer-cell-secreted extracellular vesicles suppress insulin secretion through miR-122 to impair systemic glucose homeostasis and contribute to tumour growth. Nature Cell Biology, 2022, 24, 954-967.	10.3	35
4	MiR-690 treatment causes decreased fibrosis and steatosis and restores specific Kupffer cell functions in NASH. Cell Metabolism, 2022, 34, 978-990.e4.	16.2	36
5	Chronic tissue inflammation and metabolic disease. Genes and Development, 2021, 35, 307-328.	5.9	122
6	MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice. Cell Metabolism, 2021, 33, 781-790.e5.	16.2	138
7	Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metabolism, 2021, 33, 1744-1762.	16.2	253
8	Hepatocyte-derived exosomes from early onset obese mice promote insulin sensitivity through miR-3075. Nature Metabolism, 2021, 3, 1163-1174.	11.9	43
9	TAZ Is a Negative Regulator of PPARÎ ³ Activity in Adipocytes and TAZ Deletion Improves Insulin Sensitivity and Clucose Tolerance. Cell Metabolism, 2020, 31, 162-173.e5.	16.2	61
10	The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nature Reviews Endocrinology, 2020, 16, 81-90.	9.6	195
11	Positive Reinforcing Mechanisms between GPR120 and PPARÎ ³ Modulate Insulin Sensitivity. Cell Metabolism, 2020, 31, 1173-1188.e5.	16.2	43
12	A Tribute to Robert Roy Henry—The Classic "Academic Triple Threat― Accomplished Researcher, Inspiring Teacher, and Compassionate Clinician. Diabetes Care, 2020, 43, 522-525.	8.6	0
13	Obesity Modulates Intestinal Intraepithelial T Cell Persistence, CD103 and CCR9 Expression, and Outcome in Dextran Sulfate Sodium–Induced Colitis. Journal of Immunology, 2019, 203, 3427-3435.	0.8	15
14	Microbiota-Produced <i>N</i> -Formyl Peptide fMLF Promotes Obesity-Induced Glucose Intolerance. Diabetes, 2019, 68, 1415-1426.	0.6	23
15	Neuronal SIRT1 Regulates Metabolic and Reproductive Function and the Response to Caloric Restriction. Journal of the Endocrine Society, 2019, 3, 427-445.	0.2	9
16	Role of Host GPR120 in Mediating Dietary Omega-3 Fatty Acid Inhibition of Prostate Cancer. Journal of the National Cancer Institute, 2019, 111, 52-59.	6.3	23
17	CX3CL1-Fc treatment prevents atherosclerosis in Ldlr KO mice. Molecular Metabolism, 2019, 20, 89-101.	6.5	21
18	Expansion of Islet-Resident Macrophages Leads to Inflammation Affecting Î ² Cell Proliferation and Function in Obesity. Cell Metabolism, 2019, 29, 457-474.e5.	16.2	173

#	Article	IF	CITATIONS
19	Knockdown of ANT2 reduces adipocyte hypoxia and improves insulin resistance in obesity. Nature Metabolism, 2019, 1, 86-97.	11.9	71
20	An Integrated View of Immunometabolism. Cell, 2018, 172, 22-40.	28.9	326
21	N-Thiazolylamide-based free fatty-acid 2 receptor agonists: Discovery, lead optimization and demonstration of off-target effect in a diabetes model. Bioorganic and Medicinal Chemistry, 2018, 26, 5169-5180.	3.0	3
22	Adipocyte-specific Repression of PPAR-gamma by NCoR Contributes to Scleroderma Skin Fibrosis. Arthritis Research and Therapy, 2018, 20, 145.	3.5	26
23	RalA controls glucose homeostasis by regulating glucose uptake in brown fat. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7819-7824.	7.1	36
24	Chronic fractalkine administration improves glucose tolerance and pancreatic endocrine function. Journal of Clinical Investigation, 2018, 128, 1458-1470.	8.2	27
25	Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate InÂVivo and InÂVitro Insulin Sensitivity. Cell, 2017, 171, 372-384.e12.	28.9	858
26	Inflammatory mechanisms linking obesity and metabolic disease. Journal of Clinical Investigation, 2017, 127, 1-4.	8.2	1,321
27	Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. Journal of Clinical Investigation, 2017, 127, 1019-1030.	8.2	94
28	Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell, 2016, 167, 973-984.e12.	28.9	214
29	G protein-coupled receptors as targets for anti-diabetic therapeutics. Nature Reviews Drug Discovery, 2016, 15, 161-172.	46.4	90
30	p75 Neurotrophin Receptor Regulates Energy Balance in Obesity. Cell Reports, 2016, 14, 255-268.	6.4	42
31	Regulation of metabolism by the innate immune system. Nature Reviews Endocrinology, 2016, 12, 15-28.	9.6	502
32	High Fat Diet Causes Depletion of Intestinal Eosinophils Associated with Intestinal Permeability. PLoS ONE, 2015, 10, e0122195.	2.5	97
33	Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet. PLoS ONE, 2015, 10, e0140034.	2.5	59
34	GPR43 Potentiates Î ² -Cell Function in Obesity. Diabetes, 2015, 64, 3203-3217.	0.6	162
35	Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nature Medicine, 2015, 21, 159-165.	30.7	562
36	LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nature Medicine, 2015, 21, 239-247.	30.7	252

#	Article	IF	CITATIONS
37	Adipocyte SIRT1 knockout promotes PPARÎ ³ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity. Molecular Metabolism, 2015, 4, 378-391.	6.5	129
38	Characterization of Distinct Subpopulations of Hepatic Macrophages in HFD/Obese Mice. Diabetes, 2015, 64, 1120-1130.	0.6	143
39	Proâ€Inflammatory macrophages increase in skeletal muscle of high fatâ€Fed mice and correlate with metabolic risk markers in humans. Obesity, 2014, 22, 747-757.	3.0	144
40	Macrophages, Immunity, and Metabolic Disease. Immunity, 2014, 41, 36-48.	14.3	606
41	C/EBPα regulates macrophage activation and systemic metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1144-E1154.	3.5	41
42	Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature, 2014, 513, 436-439.	27.8	201
43	A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nature Medicine, 2014, 20, 942-947.	30.7	317
44	Increased Adipocyte O2 Consumption Triggers HIF-1α, Causing Inflammation and Insulin Resistance in Obesity. Cell, 2014, 157, 1339-1352.	28.9	443
45	NCoR Repression of LXRs Restricts Macrophage Biosynthesis of Insulin-Sensitizing Omega 3 Fatty Acids. Cell, 2013, 155, 200-214.	28.9	149
46	An inhibitor of the protein kinases TBK1 and IKK-É> improves obesity-related metabolic dysfunctions in mice. Nature Medicine, 2013, 19, 313-321.	30.7	364
47	The Origins and Drivers of Insulin Resistance. Cell, 2013, 152, 673-684.	28.9	522
48	The Fractalkine/CX3CR1 System Regulates Î ² Cell Function and Insulin Secretion. Cell, 2013, 153, 413-425.	28.9	121
49	Neuronal Sirt1 Deficiency Increases Insulin Sensitivity in Both Brain and Peripheral Tissues. Journal of Biological Chemistry, 2013, 288, 10722-10735.	3.4	50
50	Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated epigenetic effects. Journal of Clinical Investigation, 2013, 123, 4318-4328.	8.2	73
51	GPR105 Ablation Prevents Inflammation and Improves Insulin Sensitivity in Mice with Diet-Induced Obesity. Journal of Immunology, 2012, 189, 1992-1999.	0.8	65
52	G protein–coupled receptor 21 deletion improves insulin sensitivity in diet-induced obese mice. Journal of Clinical Investigation, 2012, 122, 2444-2453.	8.2	49
53	The cellular and signaling networks linking the immune system and metabolism in disease. Nature Medicine, 2012, 18, 363-374.	30.7	1,321
54	Maintenance of Metabolic Homeostasis by Sestrin2 and Sestrin3. Cell Metabolism, 2012, 16, 311-321.	16.2	242

#	Article	IF	CITATIONS
55	Inflammation and Lipid Signaling in the Etiology of Insulin Resistance. Cell Metabolism, 2012, 15, 635-645.	16.2	689
56	Increased Macrophage Migration Into Adipose Tissue in Obese Mice. Diabetes, 2012, 61, 346-354.	0.6	304
57	Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nature Medicine, 2012, 18, 1407-1412.	30.7	751
58	Protection against hepatic steatosis and systemic insulin resistance by liverâ€specific depletion of p70 S6 kinase. FASEB Journal, 2012, 26, lb133.	0.5	0
59	Inflammation and Insulin Resistance. FASEB Journal, 2012, 26, 465.3.	0.5	1
60	Inflammation Is Necessary for Long-Term but Not Short-Term High-Fat Diet–Induced Insulin Resistance. Diabetes, 2011, 60, 2474-2483.	0.6	452
61	Adipocyte NCoR Knockout Decreases PPARÎ ³ Phosphorylation and Enhances PPARÎ ³ Activity and Insulin Sensitivity. Cell, 2011, 147, 815-826.	28.9	246
62	Brain PPAR-γ promotes obesity and is required for the insulin–sensitizing effect of thiazolidinediones. Nature Medicine, 2011, 17, 618-622.	30.7	214
63	SirT1 Regulates Adipose Tissue Inflammation. Diabetes, 2011, 60, 3235-3245.	0.6	261
64	PPARG Regulates Gonadotropin-Releasing Hormone Signaling in LbetaT2 Cells In Vitro and Pituitary Gonadotroph Function In Vivo in Mice1. Biology of Reproduction, 2011, 84, 466-475.	2.7	27
65	Macrophages, Inflammation, and Insulin Resistance. Annual Review of Physiology, 2010, 72, 219-246.	13.1	2,279
66	FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages. EMBO Journal, 2010, 29, 4223-4236.	7.8	203
67	Functional Heterogeneity of CD11c-positive Adipose Tissue Macrophages in Diet-induced Obese Mice. Journal of Biological Chemistry, 2010, 285, 15333-15345.	3.4	200
68	Inducible Nitric Oxide Synthase Deficiency in Myeloid Cells Does Not Prevent Diet-Induced Insulin Resistance. Molecular Endocrinology, 2010, 24, 1413-1422.	3.7	19
69	GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-inflammatory and Insulin-Sensitizing Effects. Cell, 2010, 142, 687-698.	28.9	2,013
70	Fat-Induced Inflammation Unchecked. Cell Metabolism, 2010, 12, 553-554.	16.2	16
71	SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E419-E428.	3.5	339
72	PPARÎ ³ activation in adipocytes is sufficient for systemic insulin sensitization. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22504-22509.	7.1	231

#	Article	IF	CITATIONS
73	FoxO1 Haploinsufficiency Protects Against High-Fat Diet–Induced Insulin Resistance With Enhanced Peroxisome Proliferator–Activated Receptor γ Activation in Adipose Tissue. Diabetes, 2009, 58, 1275-1282.	0.6	90
74	SIRT1 Exerts Anti-Inflammatory Effects and Improves Insulin Sensitivity in Adipocytes. Molecular and Cellular Biology, 2009, 29, 1363-1374.	2.3	382
75	Glucocorticoids and Thiazolidinediones Interfere with Adipocyte-mediated Macrophage Chemotaxis and Recruitment. Journal of Biological Chemistry, 2009, 284, 31223-31235.	3.4	74
76	FOXO1 Transrepresses Peroxisome Proliferator-activated Receptor Î ³ Transactivation, Coordinating an Insulin-induced Feed-forward Response in Adipocytes. Journal of Biological Chemistry, 2009, 284, 12188-12197.	3.4	115
77	Novel liver-specific TORC2 siRNA corrects hyperglycemia in rodent models of type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E1137-E1146.	3.5	62
78	IKKÉ›: A Bridge between Obesity and Inflammation. Cell, 2009, 138, 834-836.	28.9	36
79	Hematopoietic Cell-Specific Deletion of Toll-like Receptor 4 Ameliorates Hepatic and Adipose Tissue Insulin Resistance in High-Fat-Fed Mice. Cell Metabolism, 2009, 10, 419-429.	16.2	394
80	Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature, 2008, 451, 964-969.	27.8	508
81	A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature, 2008, 456, 269-273.	27.8	481
82	Inflammation and insulin resistance. FEBS Letters, 2008, 582, 97-105.	2.8	857
83	Fat Talks, Liver and Muscle Listen. Cell, 2008, 134, 914-916.	28.9	48
84	Ablation of CD11c-Positive Cells Normalizes Insulin Sensitivity in Obese Insulin Resistant Animals. Cell Metabolism, 2008, 8, 301-309.	16.2	708
85	β-Arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic β cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6614-6619.	7.1	185
86	Blockade of α4 Integrin Signaling Ameliorates the Metabolic Consequences of High-Fat Diet–Induced Obesity. Diabetes, 2008, 57, 1842-1851.	0.6	40
87	Insulin sensitivity: modulation by nutrients and inflammation. Journal of Clinical Investigation, 2008, 118, 2992-3002.	8.2	980
88	Tumor Necrosis Factor Receptor-1 Can Function through a Gαq/11-β-Arrestin-1 Signaling Complex. Journal of Biological Chemistry, 2007, 282, 28549-28556.	3.4	27
89	Selective modulation of promoter recruitment and transcriptional activity of PPARÎ ³ . Biochemical and Biophysical Research Communications, 2007, 364, 515-521.	2.1	67
90	JNK1 in Hematopoietically Derived Cells Contributes to Diet-Induced Inflammation and Insulin Resistance without Affecting Obesity. Cell Metabolism, 2007, 6, 386-397.	16.2	460

#	Article	IF	CITATIONS
91	A Subpopulation of Macrophages Infiltrates Hypertrophic Adipose Tissue and Is Activated by Free Fatty Acids via Toll-like Receptors 2 and 4 and JNK-dependent Pathways. Journal of Biological Chemistry, 2007, 282, 35279-35292.	3.4	840
92	Bone marrow–specific Cap gene deletion protects against high-fat diet–induced insulin resistance. Nature Medicine, 2007, 13, 455-462.	30.7	110
93	Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature, 2007, 450, 712-716.	27.8	1,565
94	2006 Association of American Physicians Presidential Address: The US's changing competitiveness in the biomedical sciences. Journal of Clinical Investigation, 2007, 117, 270-276.	8.2	6
95	Macrophage PPARÎ ³ is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. Journal of Clinical Investigation, 2007, 117, 1658-1669.	8.2	413
96	Stressed out about obesity and insulin resistance. Nature Medicine, 2006, 12, 41-42.	30.7	93
97	Increased Malonyl-CoA Levels in Muscle From Obese and Type 2 Diabetic Subjects Lead to Decreased Fatty Acid Oxidation and Increased Lipogenesis; Thiazolidinedione Treatment Reverses These Defects. Diabetes, 2006, 55, 2277-2285.	0.6	250
98	CELL SIGNALING: A New Way to Burn Fat. Science, 2006, 312, 1756-1758.	12.6	24
99	PPARÂ regulates glucose metabolism and insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3444-3449.	7.1	451
100	Lentiviral Short Hairpin Ribonucleic Acid-Mediated Knockdown of GLUT4 in 3T3-L1 Adipocytes. Endocrinology, 2006, 147, 2245-2252.	2.8	58
101	IKK-β links inflammation to obesity-induced insulin resistance. Nature Medicine, 2005, 11, 191-198.	30.7	1,591
102	Insulin disrupts β-adrenergic signalling to protein kinase A in adipocytes. Nature, 2005, 437, 569-573.	27.8	283
103	G Protein-Coupled Receptor Kinase 2 Mediates Endothelin-1-Induced Insulin Resistance via the Inhibition of Both Gαq/11 and Insulin Receptor Substrate-1 Pathways in 3T3-L1 Adipocytes. Molecular Endocrinology, 2005, 19, 2760-2768.	3.7	81
104	JNK and Tumor Necrosis Factor-α Mediate Free Fatty Acid-induced Insulin Resistance in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 2005, 280, 35361-35371.	3.4	346
105	Adenovirus-Mediated Adiponectin Expression Augments Skeletal Muscle Insulin Sensitivity in Male Wistar Rats. Diabetes, 2005, 54, 1304-1313.	0.6	76
106	Disruption of Microtubules Ablates the Specificity of Insulin Signaling to GLUT4 Translocation in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 2005, 280, 42300-42306.	3.4	50
107	Inflamed fat: what starts the fire?. Journal of Clinical Investigation, 2005, 116, 33-35.	8.2	387
108	Protein Phosphatase 2A Negatively Regulates Insulin's Metabolic Signaling Pathway by Inhibiting Akt (Protein Kinase B) Activity in 3T3-L1 Adipocytes. Molecular and Cellular Biology, 2004, 24, 8778-8789.	2.3	199

#	Article	IF	CITATIONS
109	Complex Distribution, Not Absolute Amount of Adiponectin, Correlates with Thiazolidinedione-mediated Improvement in Insulin Sensitivity. Journal of Biological Chemistry, 2004, 279, 12152-12162.	3.4	1,018
110	PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nature Medicine, 2004, 10, 530-534.	30.7	499
111	GRK2 is an endogenous protein inhibitor of the insulin signaling pathway for glucose transport stimulation. EMBO Journal, 2004, 23, 2821-2829.	7.8	86
112	Adenovirus-mediated chronic "hyper-resistinemia―leads to in vivo insulin resistance in normal rats. Journal of Clinical Investigation, 2004, 114, 224-231.	8.2	226
113	Muscle-specific Pparg deletion causes insulin resistance. Nature Medicine, 2003, 9, 1491-1497.	30.7	454
114	Â-Arrestin 1 down-regulation after insulin treatment is associated with supersensitization of Â2 adrenergic receptor GÂs signaling in 3T3-L1 adipocytes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 161-166.	7.1	40
115	Insulin-Induced GLUT4 Translocation Involves Protein Kinase C-λ-Mediated Functional Coupling between Rab4 and the Motor Protein Kinesin. Molecular and Cellular Biology, 2003, 23, 4892-4900.	2.3	160
116	Adipose-specific peroxisome proliferator-activated receptor Î ³ knockout causes insulin resistance in fat and liver but not in muscle. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15712-15717.	7.1	877
117	Cdc42 Is a Rho GTPase Family Member That Can Mediate Insulin Signaling to Glucose Transport in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 2003, 278, 13765-13774.	3.4	76
118	Effects of peroxisome proliferator-activated receptor on placentation, adiposity, and colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 303-308.	7.1	548
119	Insulin Induces Heterologous Desensitization of G Protein-Coupled Receptor and Insulin-Like Growth Factor I Signaling by Downregulating β-Arrestin-1. Molecular and Cellular Biology, 2002, 22, 6272-6285.	2.3	76
120	The Effect of Thiazolidinediones on Plasma Adiponectin Levels in Normal, Obese, and Type 2 Diabetic Subjects. Diabetes, 2002, 51, 2968-2974.	0.6	671
121	Reduced-Median-Network Analysis of Complete Mitochondrial DNA Coding-Region Sequences for the Major African, Asian, and European Haplogroups. American Journal of Human Genetics, 2002, 70, 1152-1171.	6.2	482
122	Fatty Acid-Induced Insulin Resistance: Decreased Muscle PI3K Activation But Unchanged Akt Phosphorylation. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 226-234.	3.6	53
123	Profiling Gene Transcription In Vivo Reveals Adipose Tissue as an Immediate Target of Tumor Necrosis Factor-A: Implications for Insulin Resistance. Diabetes, 2002, 51, 3176-3188.	0.6	231
124	Prospects for Research in Diabetes Mellitus. JAMA - Journal of the American Medical Association, 2001, 285, 628.	7.4	44
125	Nuclear Receptor Minireview Series. Journal of Biological Chemistry, 2001, 276, 36863-36864.	3.4	255
126	Decreased Susceptibility to Fatty Acid–Induced Peripheral Tissue Insulin Resistance in Women. Diabetes, 2001, 50, 1344-1350.	0.6	140

8

#	Article	IF	CITATIONS
127	β-Arrestin-mediated Recruitment of the Src Family Kinase Yes Mediates Endothelin-1-stimulated Glucose Transport. Journal of Biological Chemistry, 2001, 276, 43663-43667.	3.4	115
128	Insulin and Insulin-like Growth Factor I Receptors Utilize Different G Protein Signaling Components. Journal of Biological Chemistry, 2001, 276, 15688-15695.	3.4	143
129	Chronic endothelin-1 treatment leads to heterologous desensitization of insulin signaling in 3T3-L1 adipocytes. Journal of Clinical Investigation, 2001, 107, 1193-1202.	8.2	82
130	Improved insulin-sensitivity in mice heterozygous for PPAR-Î ³ deficiency. Journal of Clinical Investigation, 2000, 105, 287-292.	8.2	369
131	Gene therapy for rats and mice. Nature, 2000, 408, 420-421.	27.8	42
132	Treatment of insulin resistance with peroxisome proliferator–activated receptor γ agonists. Journal of Clinical Investigation, 2000, 106, 467-472.	8.2	481
133	Insulin-Mediated Cellular Insulin Resistance Decreases Osmotic Shock-Induced Glucose Transport in 3T3-L1 Adipocytes**This work was supported by NIH Grant DK-33651 and the Veterans Administration Medical Research Service. Andrej Janez was supported by a grant from Slovenian Ministry of Science and Technology (sklad za mlade raziskovalce) Endocrinology, 2000, 141, 4657-4663.	2.8	10
134	A Rapamycin-Sensitive Pathway Down-Regulates Insulin Signaling via Phosphorylation and Proteasomal Degradation of Insulin Receptor Substrate-1. Molecular Endocrinology, 2000, 14, 783-794.	3.7	402
135	The Acute and Chronic Stimulatory Effects of Endothelin-1 on Glucose Transport Are Mediated by Distinct Pathways in 3T3-L1 Adipocytes. Endocrinology, 2000, 141, 4623-4628.	2.8	10
136	Inhibition of PLC-γ1 activity converts nerve growth factor from an anti-mitogenic to a mitogenic signal in CHO cells. Oncogene, 1999, 18, 4908-4919.	5.9	18
137	G Alpha-q/11 Protein Plays a Key Role in Insulin-Induced Glucose Transport in 3T3-L1 Adipocytes. Molecular and Cellular Biology, 1999, 19, 6765-6774.	2.3	159
138	Ligand-Independent GLUT4 Translocation Induced by Guanosine 5′-O-(3-Thiotriphosphate) Involves Tyrosine Phosphorylation*. Endocrinology, 1998, 139, 358-364.	2.8	26
139	Ligand-Independent GLUT4 Translocation Induced by Guanosine 5'-O-(3-Thiotriphosphate) Involves Tyrosine Phosphorylation. Endocrinology, 1998, 139, 358-364.	2.8	7
140	Effects of General Receptor for Phosphoinositides 1 on Insulin and Insulin-Like Growth Factor I-Induced Cytoskeletal Rearrangement, Glucose Transporter-4 Translocation, and Deoxyribonucleic Acid Synthesis. Endocrinology, 1998, 139, 4984-4990.	2.8	8
141	Nerve Growth Factor Processing and Trafficking Events Following TrkA-Mediated Endocytosis. Endocrinology, 1998, 139, 3232-3240.	2.8	20
142	The Small Guanosine Triphosphate-Binding Protein Rab4 Is Involved in Insulin-Induced GLUT4 Translocation and Actin Filament Rearrangement in 3T3-L1 Cells*. Endocrinology, 1997, 138, 4941-4949.	2.8	69
143	Troglitazone. Drugs, 1997, 54, 102.	10.9	Ο
144	The G12 coupled thrombin receptor stimulates mitogenesis through the Shc SH2 domain. Oncogene, 1997, 15, 595-600.	5.9	32

#	Article	IF	CITATIONS
145	Activated Phosphatidylinositol 3-Kinase Is Sufficient to Mediate Actin Rearrangement and GLUT4 Translocation in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1996, 271, 17605-17608.	3.4	222
146	Protein-tyrosine Phosphatase 1B Is a Negative Regulator of Insulin- and Insulin-like Growth Factor-I-stimulated Signaling. Journal of Biological Chemistry, 1996, 271, 19810-19816.	3.4	396
147	Acute effects of troglitazone on in vivo insulin action in normal rats. Metabolism: Clinical and Experimental, 1995, 44, 1166-1169.	3.4	56
148	Improvement in Glucose Tolerance and Insulin Resistance in Obese Subjects Treated with Troglitazone. New England Journal of Medicine, 1994, 331, 1188-1193.	27.0	887
149	Src homology 2 domains of protein tyrosine phosphatase are associated in vitro with both the insulin receptor and insulin receptor substrate-1 via different phosphotyrosine motifs. FEBS Letters, 1994, 340, 216-220.	2.8	36
150	The Insulin Receptor: A Multifunctional Protein. Diabetes, 1990, 39, 1009-1016.	0.6	140
151	Defective Insulin Receptor Function in Down-Regulated HepG2 Cells*. Endocrinology, 1990, 127, 1706-1717.	2.8	36
152	In vitro studies on the action of CS-045, a new antidiabetic agent. Metabolism: Clinical and Experimental, 1990, 39, 1056-1062.	3.4	184
153	Cellular mechanisms of insulin resistance in non-insulin-dependent (type II) diabetes. American Journal of Medicine, 1988, 85, 86-105.	1.5	95
154	Increased phosphorylation of ribosomal protein S6 following microinjection of insulin receptor-kinase into Xenopus oocytes. Nature, 1986, 320, 459-461.	27.8	42
155	Insulin Internalization and Degradation in Adipocytes from Normal and Type II Diabetic Subjects*. Journal of Clinical Endocrinology and Metabolism, 1986, 62, 268-274.	3.6	36
156	Post binding events in insulin action. Diabetes/metabolism Reviews, 1985, 1, 59-97.	0.3	6
157	Mechanisms of Insulin Resistance in Aging. Journal of Clinical Investigation, 1983, 71, 1523-1535.	8.2	503
158	Mechanisms of insulin resistance in obesity and noninsulin-dependent (type II) diabetes. American Journal of Medicine, 1981, 70, 151-168.	1.5	319
159	Nonketotic diabetes mellitus: Insulin deficiency or insulin resistance?. American Journal of Medicine, 1976, 60, 80-88.	1.5	401
160	Reappraisal of the role of insulin in hypertriglyceridemia. American Journal of Medicine, 1974, 57, 551-560.	1.5	510
161	Effects of Weight Reduction on Obesity STUDIES OF LIPID AND CARBOHYDRATE METABOLISM IN NORMAL AND HYPERLIPOPROTEINEMIC SUBJECTS. Journal of Clinical Investigation, 1974, 53, 64-76.	8.2	474