Thomas E Lane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7368372/publications.pdf Version: 2024-02-01

THOMAS FLANE

#	Article	IF	CITATIONS
1	IFN-γ-Inducible Protein 10 (IP-10; CXCL10)-Deficient Mice Reveal a Role for IP-10 in Effector T Cell Generation and Trafficking. Journal of Immunology, 2002, 168, 3195-3204.	0.8	971
2	Accelerated Intestinal Epithelial Cell Turnover: A New Mechanism of Parasite Expulsion. Science, 2005, 308, 1463-1465.	12.6	407
3	Coronavirus infection of the central nervous system: host–virus stand-off. Nature Reviews Microbiology, 2006, 4, 121-132.	28.6	364
4	The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1316-25.	7.1	311
5	Zinc Sequestration by the Neutrophil Protein Calprotectin Enhances Salmonella Growth in the Inflamed Gut. Cell Host and Microbe, 2012, 11, 227-239.	11.0	286
6	Cutting Edge: The T Cell Chemoattractant IFN-Inducible Protein 10 Is Essential in Host Defense Against Viral-Induced Neurologic Disease. Journal of Immunology, 2000, 165, 2327-2330.	0.8	249
7	The Th17–ELR+ CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. Journal of Experimental Medicine, 2008, 205, 811-823.	8.5	244
8	A Central Role for CD4+ T Cells and RANTES in Virus-Induced Central Nervous System Inflammation and Demyelination. Journal of Virology, 2000, 74, 1415-1424.	3.4	234
9	Blocking Chemokine Responsive to γ–2/Interferon (IFN)-γ Inducible Protein and Monokine Induced by IFN-γ Activity In Vivo Reduces the Pathogenetic but not the Antiviral Potential of Hepatitis B Virus–specific Cytotoxic T Lymphocytes. Journal of Experimental Medicine, 2001, 194, 1755-1766.	8.5	225
10	CXCR2-positive neutrophils are essential for cuprizone-induced demyelination: relevance to multiple sclerosis. Nature Neuroscience, 2010, 13, 319-326.	14.8	209
11	Neutralization of the Chemokine CXCL10 Reduces Inflammatory Cell Invasion and Demyelination and Improves Neurological Function in a Viral Model of Multiple Sclerosis. Journal of Immunology, 2001, 167, 4091-4097.	0.8	202
12	Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11068-11073.	7.1	200
13	G-CSF–mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood, 2011, 117, 4349-4357.	1.4	179
14	Structural and functional neuropathology in transgenic mice with CNS expression of IFN-α1Published on the World Wide Web on 17 March 1999.1. Brain Research, 1999, 835, 46-61.	2.2	174
15	Inflammation Induced by Infection Potentiates Tau Pathological Features in Transgenic Mice. American Journal of Pathology, 2011, 178, 2811-2822.	3.8	166
16	Role of Neutrophils in Exacerbation of Brain Injury After Focal Cerebral Ischemia in Hyperlipidemic Mice. Stroke, 2015, 46, 2916-2925.	2.0	166
17	Coxsackievirus B3-Induced Myocarditis. American Journal of Pathology, 1998, 153, 417-428.	3.8	143
18	Expression of Mig (Monokine Induced by Interferon-γ) Is Important in T Lymphocyte Recruitment and Host Defense Following Viral Infection of the Central Nervous System. Journal of Immunology, 2001, 166, 1790-1795.	0.8	143

#	Article	IF	CITATIONS
19	Reducing inflammation decreases secondary degeneration and functional deficit after spinal cord injury. Experimental Neurology, 2003, 184, 456-463.	4.1	143
20	The Lineage-Defining Transcription Factors SOX2 and NKX2-1 Determine Lung Cancer Cell Fate and Shape the Tumor Immune Microenvironment. Immunity, 2018, 49, 764-779.e9.	14.3	138
21	Antibody Targeting of the CC Chemokine Ligand 5 Results in Diminished Leukocyte Infiltration into the Central Nervous System and Reduced Neurologic Disease in a Viral Model of Multiple Sclerosis. Journal of Immunology, 2004, 172, 4018-4025.	0.8	126
22	Chronic Systemic Infection Exacerbates Ischemic Brain Damage via a CCL5 (Regulated on Activation,) Tj ETQq0 0 Neuroscience, 2010, 30, 10086-10095.	0 rgBT /0 3.6	verlock 10 Tf 119
23	Reduced Macrophage Infiltration and Demyelination in Mice Lacking the Chemokine Receptor CCR5 Following Infection with a Neurotropic Coronavirus. Virology, 2001, 288, 8-17.	2.4	113
24	Intranasal Treatment with Poly(I·C) Protects Aged Mice from Lethal Respiratory Virus Infections. Journal of Virology, 2012, 86, 11416-11424.	3.4	113
25	CC Chemokine Ligand 3 (CCL3) Regulates CD8 + -T-Cell Effector Function and Migration following Viral Infection. Journal of Virology, 2003, 77, 4004-4014.	3.4	111
26	Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15312-15317.	7.1	108
27	Cutting Edge: Inhibition of Hepatitis B Virus Replication by Activated NK T Cells Does Not Require Inflammatory Cell Recruitment to the Liver. Journal of Immunology, 2001, 167, 6701-6705.	0.8	102
28	CXC Chemokine Ligand 10 Controls Viral Infection in the Central Nervous System: Evidence for a Role in Innate Immune Response through Recruitment and Activation of Natural Killer Cells. Journal of Virology, 2004, 78, 585-594.	3.4	102
29	Lack of CCR2 Results in Increased Mortality and Impaired Leukocyte Activation and Trafficking Following Infection of the Central Nervous System with a Neurotropic Coronavirus. Journal of Immunology, 2001, 167, 4585-4592.	0.8	96
30	Effect of Anti-CXCL10 Monoclonal Antibody on Herpes Simplex Virus Type 1 Keratitis and Retinal Infection. Journal of Virology, 2003, 77, 10037-10046.	3.4	88
31	Remyelination, axonal sparing, and locomotor recovery following transplantation of glial-committed progenitor cells into the MHV model of multiple sclerosis. Experimental Neurology, 2004, 187, 254-265.	4.1	86
32	Dengue Virus Induces Expression of CXC Chemokine Ligand 10/IFN-Î ³ -Inducible Protein 10, Which Competitively Inhibits Viral Binding to Cell Surface Heparan Sulfate. Journal of Immunology, 2006, 177, 3185-3192.	0.8	83
33	The Pathogenesis of Murine Coronavirus Infection of the Central Nervous System. Critical Reviews in Immunology, 2010, 30, 119-130.	0.5	82
34	Microgliaâ€induced ILâ€6 protects against neuronal loss following HSVâ€1 infection of neural progenitor cells. Glia, 2014, 62, 1418-1434.	4.9	82
35	The Role of Chemokines during Viral Infection of the CNS. PLoS Pathogens, 2010, 6, e1000937.	4.7	81
36	Speaking out about gender imbalance in invited speakers improves diversity. Nature Immunology, 2017, 18, 475-478.	14.5	81

#	Article	IF	CITATIONS
37	Distinct roles for IP-10/C XC L10 in three animal models, Theiler's virus infection, EA E, and MHV infection, for multiple sclerosis: implication of differing roles for IP-10. Multiple Sclerosis Journal, 2004, 10, 26-34.	3.0	79
38	Differential roles for CXCR3 in CD4+ and CD8+ T cell trafficking following viral infection of the CNS. European Journal of Immunology, 2006, 36, 613-622.	2.9	76
39	CXCL10/CXCR3â€mediated responses promote immunity to respiratory syncytial virus infection by augmenting dendritic cell and CD8 ⁺ T cell efficacy. European Journal of Immunology, 2008, 38, 2168-2179.	2.9	76
40	Myelin Repair Is Accelerated by Inactivating CXCR2 on Nonhematopoietic Cells. Journal of Neuroscience, 2010, 30, 9074-9083.	3.6	75
41	Regional Hypomyelination and Dysplasia in Transgenic Mice with Astrocyte-Directed Expression of Interferon-1 ³ . Journal of Molecular Neuroscience, 2000, 15, 45-60.	2.3	73
42	The CC Chemokine Receptor 5 Is Important in Control of Parasite Replication and Acute Cardiac Inflammation following Infection with <i>Trypanosoma cruzi</i> . Infection and Immunity, 2006, 74, 135-143.	2.2	72
43	Enhanced T Cell Proliferation in Mice Lacking the p85β Subunit of Phosphoinositide 3-Kinase. Journal of Immunology, 2004, 172, 6615-6625.	0.8	69
44	Sjogren's syndrome-like disease in mice with T cells lacking class 1A phosphoinositide-3-kinase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16882-16887.	7.1	68
45	The CC chemokine ligand 3 regulates CD11c+CD11b+CD8αâ^' dendritic cell maturation and activation following viral infection of the central nervous system: implications for a role in T cell activation. Virology, 2004, 327, 8-15.	2.4	65
46	Chitinase Dependent Control of Protozoan Cyst Burden in the Brain. PLoS Pathogens, 2012, 8, e1002990.	4.7	65
47	Human Neural Precursor Cells Promote Neurologic Recovery in a Viral Model of Multiple Sclerosis. Stem Cell Reports, 2014, 2, 825-837.	4.8	63
48	Functional Expression of Chemokine Receptor CCR5 on CD4 + T Cells during Virus-Induced Central Nervous System Disease. Journal of Virology, 2003, 77, 191-198.	3.4	60
49	IP-10 and Mig facilitate accumulation of T cells in the virus-infected liver. Cellular Immunology, 2002, 219, 48-56.	3.0	58
50	The Chemokines CXCL9 and CXCL10 Promote a Protective Immune Response but Do Not Contribute to Cardiac Inflammation following Infection with <i>Trypanosoma cruzi</i> . Infection and Immunity, 2006, 74, 125-134.	2.2	57
51	MicroRNA-155 enhances T cell trafficking and antiviral effector function in a model of coronavirus-induced neurologic disease. Journal of Neuroinflammation, 2016, 13, 240.	7.2	57
52	Mouse Hepatitis Virus Infection of the Central Nervous System: Chemokine-Mediated Regulation of Host Defense and Disease. Viral Immunology, 2002, 15, 261-272.	1.3	55
53	Measles Virus Infection Induces Chemokine Synthesis by Neurons. Journal of Immunology, 2003, 171, 3102-3109.	0.8	55
54	Differential roles of CCL2 and CCR2 in host defense to coronavirus infection. Virology, 2004, 329, 251-260.	2.4	54

#	Article	IF	CITATIONS
55	Abnormal immune response of CCR5-deficient mice to ocular infection with herpes simplex virus type 1. Journal of General Virology, 2006, 87, 489-499.	2.9	54
56	T-cell function is partially maintained in the absence of class IA phosphoinositide 3-kinase signaling. Blood, 2007, 109, 2894-2902.	1.4	54
57	Impaired immune responses following spinal cord injury lead to reduced ability to control viral infection. Experimental Neurology, 2010, 226, 242-253.	4.1	54
58	A Protective Role for ELR+ Chemokines during Acute Viral Encephalomyelitis. PLoS Pathogens, 2009, 5, e1000648.	4.7	53
59	Microglia influence host defense, disease, and repair following murine coronavirus infection of the central nervous system. Clia, 2020, 68, 2345-2360.	4.9	49
60	Functional analysis of the CC chemokine receptor 5 (CCR5) on virus-specific CD8+ T cells following coronavirus infection of the central nervous system. Virology, 2003, 312, 407-414.	2.4	48
61	CXCR2 Signaling Protects Oligodendrocytes and Restricts Demyelination in a Mouse Model of Viral-Induced Demyelination. PLoS ONE, 2010, 5, e11340.	2.5	48
62	CXCR4 signaling regulates remyelination by endogenous oligodendrocyte progenitor cells in a viral model of demyelination. Glia, 2011, 59, 1813-1821.	4.9	46
63	Viral-induced neurodegenerative disease. Current Opinion in Microbiology, 1999, 2, 398-402.	5.1	45
64	Regulated Release of Cryptococcal Polysaccharide Drives Virulence and Suppresses Immune Cell Infiltration into the Central Nervous System. Infection and Immunity, 2018, 86, .	2.2	44
65	Importance of the CCR5–CCL5 Axis for Mucosal <i>Trypanosoma cruzi</i> Protection and B Cell Activation. Journal of Immunology, 2011, 187, 1358-1368.	0.8	43
66	Therapeutic neutralization of CXCL10 decreases secondary degeneration and functional deficit after spinal cord injury in mice. Regenerative Medicine, 2007, 2, 771-783.	1.7	42
67	CXCR2 signaling protects oligodendrocyte progenitor cells from IFN-γ/CXCL10-mediated apoptosis. Glia, 2011, 59, 1518-1528.	4.9	42
68	Chemokine CXCL10 and Coronavirus-Induced Neurologic Disease. Viral Immunology, 2019, 32, 25-37.	1.3	42
69	The microbiota protects from viral-induced neurologic damage through microglia-intrinsic TLR signaling. ELife, 2019, 8, .	6.0	41
70	Regulatory T cells promote remyelination in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis following human neural stem cell transplant. Neurobiology of Disease, 2020, 140, 104868.	4.4	40
71	Cutting Edge: The Chemokine Receptor CXCR3 Retains Invariant NK T Cells in the Thymus. Journal of Immunology, 2009, 183, 2213-2216.	0.8	39
72	Inhibition of nitric oxide synthase-2 reduces the severity of mouse hepatitis virus-induced demyelination: implications for NOS2/NO regulation of chemokine expression and inflammation. Journal of NeuroVirology, 1999, 5, 48-54.	2.1	38

#	Article	IF	CITATIONS
73	Chronic Spinal Cord Injury Impairs Primary Antibody Responses but Spares Existing Humoral Immunity in Mice. Journal of Immunology, 2012, 188, 5257-5266.	0.8	38
74	Endogenous remyelination is induced by transplant rejection in a viral model of multiple sclerosis. Journal of Neuroimmunology, 2009, 212, 74-81.	2.3	37
75	Transplantation of glial-committed progenitor cells into a viral model of multiple sclerosis induces remyelination in the absence of an attenuated inflammatory response. Experimental Neurology, 2006, 197, 420-429.	4.1	36
76	T Cell Antiviral Effector Function Is Not Dependent on CXCL10 Following Murine Coronavirus Infection. Journal of Immunology, 2006, 177, 8372-8380.	0.8	36
77	MicroRNA 155 and viral-induced neuroinflammation. Journal of Neuroimmunology, 2017, 308, 17-24.	2.3	36
78	Epstein–Barr virus-induced gene 3 negatively regulates neuroinflammation and T cell activation following coronavirus-induced encephalomyelitis. Journal of Neuroimmunology, 2013, 254, 110-116.	2.3	35
79	Expression of CXC Chemokine Ligand 10 from the Mouse Hepatitis Virus Genome Results in Protection from Viral-Induced Neurological and Liver Disease. Journal of Immunology, 2007, 179, 1155-1165.	0.8	34
80	Mitochondrial Pyruvate Carrier 1 Promotes Peripheral T Cell Homeostasis through Metabolic Regulation of Thymic Development. Cell Reports, 2020, 30, 2889-2899.e6.	6.4	34
81	CCR1 Deficiency Increases Susceptibility to Fatal Coronavirus Infection of the Central Nervous System. Viral Immunology, 2007, 20, 599-608.	1.3	33
82	Inducible Expression of CXCL1 within the Central Nervous System Amplifies Viral-Induced Demyelination. Journal of Immunology, 2016, 196, 1855-1864.	0.8	33
83	Induced CNS expression of CXCL1 augments neurologic disease in a murine model of multiple sclerosis via enhanced neutrophil recruitment. European Journal of Immunology, 2018, 48, 1199-1210.	2.9	33
84	NKG2D Receptor Signaling Enhances Cytolytic Activity by Virus-Specific CD8 ⁺ T Cells: Evidence for a Protective Role in Virus-Induced Encephalitis. Journal of Virology, 2008, 82, 3031-3044.	3.4	31
85	Two-photon imaging of remyelination of spinal cord axons by engrafted neural precursor cells in a viral model of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2349-55.	7.1	30
86	Sphingosine-1-Phosphate Receptor Antagonism Enhances Proliferation and Migration of Engrafted Neural Progenitor Cells in a Model of Viral-Induced Demyelination. American Journal of Pathology, 2015, 185, 2819-2832.	3.8	30
87	Remyelination Is Correlated with Regulatory T Cell Induction Following Human Embryoid Body-Derived Neural Precursor Cell Transplantation in a Viral Model of Multiple Sclerosis. PLoS ONE, 2016, 11, e0157620.	2.5	28
88	IFN-γ-induced apoptosis of human embryonic stem cell derived oligodendrocyte progenitor cells is restricted by CXCR2 signaling. Stem Cell Research, 2012, 9, 208-217.	0.7	27
89	CXCL10 and trafficking of virus-specific T cells during coronavirus-induced demyelination. Autoimmunity, 2009, 42, 484-491.	2.6	26
90	MHC Mismatch Results in Neural Progenitor Cell Rejection Following Spinal Cord Transplantation in a Model of Viral-Induced Demyelination. Stem Cells, 2012, 30, 2584-2595.	3.2	25

#	Article	IF	CITATIONS
91	Olig1 function is required for remyelination potential of transplanted neural progenitor cells in a model of viral-induced demyelination. Experimental Neurology, 2012, 235, 380-387.	4.1	25
92	Spinal cord injury, immunodepression, and antigenic challenge. Seminars in Immunology, 2014, 26, 415-420.	5.6	23
93	FTY720 (fingolimod) modulates the severity of viral-induced encephalomyelitis and demyelination. Journal of Neuroinflammation, 2014, 11, 138.	7.2	23
94	Microbiota promotes systemic T-cell survival through suppression of an apoptotic factor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5497-5502.	7.1	23
95	Axonal pathology and demyelination in viral models of multiple sclerosis. Discovery Medicine, 2014, 18, 79-89.	0.5	23
96	Lack of nitric oxide synthase type 2 (NOS2) results in reduced neuronal apoptosis and mortality following mouse hepatitis virus infection of the central nervous system. Journal of NeuroVirology, 2002, 8, 58-63.	2.1	22
97	Innate Immune Responses and Viral-Induced Neurologic Disease. Journal of Clinical Medicine, 2019, 8, 3.	2.4	22
98	Imaging Axonal Degeneration and Repair in Preclinical Animal Models of Multiple Sclerosis. Frontiers in Immunology, 2016, 7, 189.	4.8	21
99	Neutralization of chemokines RANTES and MIG increases virus antigen expression and spinal cord pathology during Theiler's virus infection. International Immunology, 2005, 17, 569-579.	4.0	20
100	Generation of a Protective T-Cell Response Following Coronavirus Infection of the Central Nervous System Is Not Dependent on IL-12/23 Signaling. Viral Immunology, 2008, 21, 173-188.	1.3	20
101	Single-Cell RNA Sequencing Reveals the Diversity of the Immunological Landscape following Central Nervous System Infection by a Murine Coronavirus. Journal of Virology, 2020, 94, .	3.4	19
102	Evidence for Differential Roles for NKG2D Receptor Signaling in Innate Host Defense against Coronavirus-Induced Neurological and Liver Disease. Journal of Virology, 2008, 82, 3021-3030.	3.4	18
103	IFN-γ-mediated suppression of coronavirus replication in glial-committed progenitor cells. Virology, 2009, 384, 209-215.	2.4	18
104	The Biology of Persistent Infection: Inflammation and Demyelination Following Murine Coronavirus Infection of the Central Nervous System. Current Immunology Reviews, 2009, 5, 267-276.	1.2	18
105	Microglia Do Not Restrict SARS-CoV-2 Replication following Infection of the Central Nervous System of K18-Human ACE2 Transgenic Mice. Journal of Virology, 2022, 96, jvi0196921.	3.4	18
106	Chemokine Expression and Viral Infection of the Central Nervous System: Regulation of Host Defense and Neuropathology. Immunologic Research, 2001, 24, 111-120.	2.9	17
107	Adenovirus-Mediated Expression of CXCL10 in the Central Nervous System Results in T-Cell Recruitment and Limited Neuropathology. Journal of NeuroVirology, 2003, 9, 315-324.	2.1	17
108	Anti-viral effector T cell responses and trafficking are not dependent upon DRAK2 signaling following viral infection of the central nervous system. Autoimmunity, 2007, 40, 54-65.	2.6	17

#	Article	IF	CITATIONS
109	EphA2 contributes to disruption of the blood-brain barrier in cerebral malaria. PLoS Pathogens, 2020, 16, e1008261.	4.7	17
110	Cell replacement therapies to promote remyelination in a viral model of demyelination. Journal of Neuroimmunology, 2010, 224, 101-107.	2.3	16
111	Insertion of the CXC chemokine ligand 9 (CXCL9) into the mouse hepatitis virus genome results in protection from viral-induced encephalitis and hepatitis. Virology, 2008, 382, 132-144.	2.4	14
112	Activating Receptor NKG2D Targets RAE-1-Expressing Allogeneic Neural Precursor Cells in a Viral Model of Multiple Sclerosis. Stem Cells, 2014, 32, 2690-2701.	3.2	14
113	Neutrophils and viral-induced neurologic disease. Clinical Immunology, 2018, 189, 52-56.	3.2	14
114	Disrupted CXCR2 Signaling in Oligodendroglia Lineage Cells Enhances Myelin Repair in a Viral Model of Multiple Sclerosis. Journal of Virology, 2019, 93, .	3.4	14
115	DRAK2 regulates memory T cell responses following murine coronavirus infection. Autoimmunity, 2007, 40, 483-488.	2.6	12
116	<scp>MAC2</scp> is a longâ€lasting marker of peripheral cell infiltrates into the mouse <scp>CNS</scp> after bone marrow transplantation and coronavirus infection. Glia, 2022, 70, 875-891.	4.9	11
117	Surgical Transplantation of Mouse Neural Stem Cells into the Spinal Cords of Mice Infected with Neurotropic Mouse Hepatitis Virus. Journal of Visualized Experiments, 2011, , e2834.	0.3	10
118	The chemokine receptor CXCR2 and coronavirus-induced neurologic disease. Virology, 2013, 435, 110-117.	2.4	9
119	T cell mediated suppression of neurotropic coronavirus replication in neural precursor cells. Virology, 2014, 449, 235-243.	2.4	9
120	ELR(+) chemokine signaling in host defense and disease in a viral model of central nervous system disease. Frontiers in Cellular Neuroscience, 2014, 8, 165.	3.7	8
121	T cell-selective deletion of Oct1 protects animals from autoimmune neuroinflammation while maintaining neurotropic pathogen response. Journal of Neuroinflammation, 2019, 16, 133.	7.2	8
122	Promoting remyelination through cell transplantation therapies in a model of viralâ€induced neurodegenerative disease. Developmental Dynamics, 2019, 248, 43-52.	1.8	7
123	Mouse hepatitis virus infection of the CNS: a model for defense, disease, and repair. Frontiers in Bioscience - Landmark, 2008, Volume, 4393.	3.0	6
124	CXCR2 signaling and host defense following coronavirus-induced encephalomyelitis. Future Virology, 2012, 7, 349-359.	1.8	5
125	Intraspinal Transplantation of Mouse and Human Neural Precursor Cells. Current Protocols in Stem Cell Biology, 2013, 26, 2D.16.1-2D.16.16.	3.0	5
126	Promoting remyelination: utilizing a viral model of demyelination to assess cell-based therapies. Expert Review of Neurotherapeutics, 2014, 14, 1169-1179.	2.8	5

#	Article	IF	CITATIONS
127	CXCR2 Signaling and Remyelination in Preclinical Models of Demyelination. DNA and Cell Biology, 2020, 39, 3-7.	1.9	5
128	Two-photon Imaging of Cellular Dynamics in the Mouse Spinal Cord. Journal of Visualized Experiments, 2015, , .	0.3	4
129	Evaluating the role of chemokines and chemokine receptors involved in coronavirus infection. Expert Review of Clinical Immunology, 2022, 18, 57-66.	3.0	4
130	Microbes and Autoimmunity. Autoimmunity, 2004, 37, 373-374.	2.6	3
131	Neural precursor cells derived from induced pluripotent stem cells exhibit reduced susceptibility to infection with a neurotropic coronavirus. Virology, 2017, 511, 49-55.	2.4	3
132	Chemokine Responses in Virus-Induced Neurologic Disease. , 2002, , 191-202.		2
133	Adenovirus-Mediated Expression of CXCL10 in the Central Nervous System Results in T-Cell Recruitment and Limited Neuropathology. Journal of NeuroVirology, 2003, 9, 315-324.	2.1	1
134	The Chemokine CXCL10 as a Therapeutic Target in Animal Models of Neuroinflammatory Disease. Letters in Drug Design and Discovery, 2006, 3, 683-688.	0.7	0
135	P1â€158: The Adaptive Immune System Critically Regulates Alzheimer's Disease Pathogenesis by Modulating Microglial Function. Alzheimer's and Dementia, 2016, 12, P463.	0.8	0
136	The 2020 FASEB Science Research Conference on Translational Neuroimmunology: From Mechanisms to Therapeutics, June 29â€30, 2020. FASEB Journal, 2020, 34, 14064-14068.	0.5	0
137	Transplantation of iPSC-derived neural progenitor cells promotes clinical recovery and repair in response to murine coronavirus-induced neurologic disease. , 2021, , 31-46.		0
138	Chemokines in Coronavirus-Induced Demyelination. , 2005, , 805-820.		0
139	Critical Role for CCR1:CCL5 (RANTES) Receptor Ligand Interactions in Modulating Allogeneic T Cell Responses Following Bone Marrow Transplantation Blood, 2005, 106, 3107-3107.	1.4	0

140 The Immune Response to Coronaviruses. , 0, , 339-349.

0